Performance of a Modified, Three-Step Menstrual Cycle Tracking Method in Naturally Cycling Females

Marissa L. Doroshuk, Patricia K. Doyle-Baker

Abstract


Background: An objective method of menstrual cycle tracking while minimizing participant burden and cost for field-based research is needed. A modification was proposed to a well-known three-step (m3-step) method to improve accessibility for participants and athletes with difficult travel schedules. Methods: A longitudinal design was employed, and the m3-step method (calendar counting, urinary ovulation, and salivary hormones) was completed over three consecutive cycles to assess performance while classifying menstrual variability. Naturally cycling females (N=28; age 18-36 years) from across Canada were recruited prospectively. Participants shipped their hormone samples to the lab where they were classified as “high” or “low” hormone based on ovulation status and a progesterone/estradiol (P4/E2) ratio of 100 pg/mL. Cycle length (mean, ±; SD) was self-reported (28.9 ± 4.16 days) and salivary testing occurred on cycle day 22.5 ± 3.26. Results: The average luteinizing hormone surge for those with a positive test occurred on cycle day 14.2 ± 2.27 (22/28). Average cycle length (t (24.1) = 2.44, p = 0.02), progesterone (t (21.1) = -4.72, p < 0.01) and P4/E2 ratios (t (18.9) = -7.74, p < 0.01) were statistically significant between high (12/28) and low (16/28) hormone groups. A logistic regression explored the relationship of progesterone to the hormone classification criteria using a crudes odd ratio (1.98 (95% CI 1.24 – 3.17, p < 0.01)). Conclusion: The m3-step method yielded a sensitivity of 65% and specificity of 91% using the P4/E2 ratio of 100 pg/mL. Limitations included self-reported naturally cycling, the day of the testing and the P4/E2 value used. In summary, this study examined the feasibility of a m3-step menstrual cycle tracking method to classify hormones as high or low in naturally cycling females for potential implementation in a field-based setting.

Keywords


Menstrual Cycle, Ovulation, Salivary Hormones, Luteinizing Hormone, Estradiol, Progesterone

Full Text:

PDF

References


Allen, A. M., McRae-Clark, A. L., Carlson, S., Saladin, M. E., Gray, K. M., Wetherington, C. L., McKee, S. A., & Allen, S. S. (2016). Determining menstrual phase in human biobehavioral research: A review with recommendations. Experimental and Clinical Psychopharmacology, 24(1), 1–11. https://doi.org/10.1037/pha0000057

Antero, J., Golovkine, S., Niffoi, L., Meignié, A., Chassard, T., Delarochelambert, Q., Duclos, M., Maitre, C., Maciejewski, H., Diry, A., & Toussaint, J.-F. (2023). Menstrual cycle and hormonal contraceptive phases’ effect on elite rowers’ training, performance and wellness. Frontiers in Physiology, 14, 1110526. https://doi.org/10.3389/fphys.2023.1110526

Bull, J. R., Rowland, S. P., Scherwitzl, E. B., Scherwitzl, R., Danielsson, K. G., & Harper, J. (2019). Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles. Npj Digital Medicine, 2(1), 83. https://doi.org/10.1038/s41746-019-0152-7

Cabre, H., Moore, S., Smith-Ryan, A., & Hackney, A. (2022). Relative energy deficiency in sport (RED-S): scientific, clinical, andpractical implications for the female athlete. Deutsche Zeitschrift Für Sportmedizin/German Journal of Sports Medicine, 73(7), 225–234. https://doi.org/10.5960/dzsm.2022.546

Colenso-Semple, L. M., D’Souza, A. C., Elliott-Sale, K. J., & Phillips, S. M. (2023). Current evidence shows no influence of women’s menstrual cycle phase on acute strength performance or adaptations to resistance exercise training. Frontiers in Sports and Active Living, 5, 1054542. https://doi.org/10.3389/fspor.2023.1054542

De Paula Oliveira, T., Bruinvels, G., Pedlar, C. R., Moore, B., & Newell, J. (2021). Modelling menstrual cycle length in athletes using state-space models. Scientific Reports, 11(1), 16972. https://doi.org/10.1038/s41598-021-95960-1

Dunne, C. (2018). Infertility testing and diagnosis for the community physician. BCMJ, 60(4): 203-209.

Elliott-Sale, K. J., Minahan, C. L., de Jonge, X. A. K. J., Ackerman, K. E., Sipilä, S., Constantini, N. W., Lebrun, C. M., & Hackney, A. C. (2021). Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Medicine, 51(5), 843–861. https://doi.org/10.1007/s40279-021-01435-8

Emmonds, S., Heyward, O., & Jones, B. (2019). The Challenge of Applying and Undertaking Research in Female Sport. Sports Medicine - Open, 5(1), 51. https://doi.org/10.1186/s40798-019-0224-x

Fehring, R. J., Schneider, M., & Raviele, K. (2006). Variability in the phases of the menstrual cycle. Journal of Obstetric, Gynecologic, and Neonatal Nursing : JOGNN, 35(3), 376–384.

Ferrer, E,, Rodas, G,, Casals, G,, Trilla, A,, Balagué-Dobon, L,, González, J. R., Ridley, K., White, R., &

Burden, R. J. (2024). The use of saliva and blood progesterone to profile the menstrual cycles

of youth professional football players. Frontiers in Sports and Active Living, 6:1430158. doi: 10.3389/fspor.2024.1430158

Hampson, E. (2020). A brief guide to the menstrual cycle and oral contraceptive use for researchers in behavioral endocrinology. Hormones and Behavior, 119, 104655. https://doi.org/10.1016/j.yhbeh.2019.104655

Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O’Neal, L., McLeod, L., Delacqua, G., Delacqua, F., Kirby, J., & Duda, S. N. (2019). The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics, 95, 103208. https://doi.org/10.1016/j.jbi.2019.103208

Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381. https://doi.org/10.1016/j.jbi.2008.08.010

Janse De Jonge X., Thompson, B., & Han, A. (2019). Methodological Recommendations for Menstrual Cycle Research in Sports and Exercise. Medicine & Science in Sports & Exercise, 51(12), 2610–2617. https://doi.org/10.1249/MSS.0000000000002073

Johnson S., Ellis J., Godbert S., Ali S., & Zinaman M. (2011). Comparison of a digital ovulation test with three popular line ovulation tests to investigate user accuracy and certainty. Expert Opinion on Medical Diagnostics, 5(6), 467–473. https://doi.org/10.1517/17530059.2011.617737

Johnson, S., Weddell, S., Godbert, S., Freundl, G., Roos, J., & Gnoth, C. (2015). Development of the first urinary reproductive hormone ranges referenced to independently determined ovulation day. Clinical Chemistry and Laboratory Medicine, 53(7), 1099–1108. https://doi.org/10.1515/cclm-2014-1087

McNulty, K. L., Elliott-Sale, K. J., Dolan, E., Swinton, P. A., Ansdell, P., Goodall, S., Thomas, K., & Hicks, K. M. (2020). The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Medicine, 50(10), 1813–1827. https://doi.org/10.1007/s40279-020-01319-3

Meignié, A., Duclos, M., Carling, C., Orhant, E., Provost, P., Toussaint, J.-F., & Antero, J. (2021). The Effects of Menstrual Cycle Phase on Elite Athlete Performance: A Critical and Systematic Review. Frontiers in Physiology, 12, 654585. https://doi.org/10.3389/fphys.2021.654585

Nemes, S., Jonasson, J. M., Genell, A., & Steineck, G. (2009). Bias in odds ratios by logistic regression modelling and sample size. BMC Medical Research Methodology, 9(1), 56. https://doi.org/10.1186/1471-2288-9-56

Nillni, Y. I., Rasmusson, A. M., Paul, E. L., & Pineles, S. L. (2021). The Impact of the Menstrual Cycle and Underlying Hormones in Anxiety and PTSD: What Do We Know and Where Do We Go From Here? Current Psychiatry Reports, 23(2), 8. https://doi.org/10.1007/s11920-020-01221-9

Parikh, R., Mathai, A., Parikh, S., Sekhar, G. C., & Thomas, R. (2008). Understanding and using sensitivity, speciÞcity and predictive values. Indian Journal of Ophthalmology, 56(1).

Prior, J. C., Naess, M., Langhammer, A., & Forsmo, S. (2015). Ovulation Prevalence in Women with Spontaneous Normal-Length Menstrual Cycles - A Population-Based Cohort from HUNT3, Norway. PloS one, 10(8), e0134473. https://doi.org/10.1371/journal.pone.0134473

Rossiter, A., Comyns, T. M., Sherwin, I., Nevill, A. M., & Warrington, G. D. (2023). Elite athletes’ and support staffs’ experiences and perceptions of long-haul travel, and the self-management strategies they use. International Journal of Sports Science & Coaching, 174795412311700. https://doi.org/10.1177/17479541231170080

Ross, R., Chaput, J.-P., Giangregorio, L. M., Janssen, I., Saunders, T. J., Kho, M. E., Poitras, V. J., Tomasone, J. R., El-Kotob, R., McLaughlin, E. C., Duggan, M., Carrier, J., Carson, V., Chastin, S. F., Latimer-Cheung, A. E., Chulak-Bozzer, T., Faulkner, G., Flood, S. M., Gazendam, M. K., … Tremblay, M. S. (2020). Canadian 24-Hour Movement Guidelines for Adults aged 18–64 years and Adults aged 65 years or older: an integration of physical activity, sedentary behaviour, and sleep. Applied Physiology, Nutrition, and Metabolism, 45(10 (Suppl. 2)), S57–S102. https://doi.org/10.1139/apnm-2020-0467

Schaumberg, M. A., Jenkins, D. G., Janse de Jonge, X. A. K., Emmerton, L. M., & Skinner, T. L. (2017). Three-step method for menstrual and oral contraceptive cycle verification. Journal of Science and Medicine in Sport, 20(11), 965–969. https://doi.org/10.1016/j.jsams.2016.08.013

Schmalenberger, K. M., Tauseef, H. A., Barone, J. C., Owens, S. A., Lieberman, L., Jarczok, M. N., Girdler, S. S., Kiesner, J., Ditzen, B., & Eisenlohr-Moul, T. A. (2021). How to study the menstrual cycle: Practical tools and recommendations. Psychoneuroendocrinology, 123, 104895. https://doi.org/10.1016/j.psyneuen.2020.104895

Schultheiss, O.C., & Stanton, S.J. (2009). Assessment of salivary hormones, In: Harmon-Jones E, & Beer JS Eds.,

Methods in Social Neuroscience, 17–44. Guilford Press.

Shea, A. A., & Vitzthum, V. J. (2020). The extent and causes of natural variation in menstrual cycles: Integrating empirically-based models of ovarian cycling into research on women’s health. Drug Discovery Today: Disease Models, 32, 41–49. https://doi.org/10.1016/j.ddmod.2020.11.002

Satterthwaite, F. E. (1946). An Approximate Distribution of Estimates of Variance Components. Biometrics Bulletin, 2(6), 110-114.

Tivis, L. J., Richardson, M. D., Peddi, E., & Arjmandi, B. (2005). Saliva versus serum estradiol: Implications for research studies using postmenopausal women. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(5), 727–732. https://doi.org/10.1016/j.pnpbp.2005.04.029

Tourville, T. W., Shultz, S. J., Vacek, P. M., Knudsen, E. J., Bernstein, I. M., Tourville, K. J., Hardy, D. M., Johnson, R. J., Slauterbeck, J. R., & Beynnon, B. D. (2016). Evaluation of an Algorithm to Predict Menstrual-Cycle Phase at the Time of Injury. Journal of Athletic Training, 51(1), 47–56. https://doi.org/10.4085/1062-6050-51.3.01

Vitzthum, V. J., Thornburg, J., Spielvogel, H., & Deschner, T. (2021). Recognizing normal reproductive biology: A comparative analysis of variability in menstrual cycle biomarkers in German and Bolivian women. American Journal of Human Biology, 33(5), e23663. https://doi.org/10.1002/ajhb.23663

Westerlind, K. C., & Williams, N. I. (2007). Effect of Energy Deficiency on Estrogen Metabolism in Premenopausal Women. Medicine & Science in Sports & Exercise, 39(7), 1090–1097. https://doi.org/10.1097/mss.0b013e3180485727

Wideman, L., Montgomery, M. M., Levine, B. J., Beynnon, B. D., & Shultz, S. J. (2013). Accuracy of calendar-based methods for assigning menstrual cycle phase in women. Sports Health, 5(2), 143–149. https://doi.org/10.1177/1941738112469930

Winegarden, A., Lebrun, C., Passfield, L., & Doyle-Baker, P. (2021). Three km track time trial performance changes after HIIT in competitive cross-country skiers. International Journal of Kinesiology and Sports Science., 9(1), 15–23. https://doi.org/10.7575/AIAC.IJKSS.V.9N.1P.15

Yu, J.-L., Su, Y.-F., Zhang, C., Jin, L., Lin, X.-H., Chen, L.-T., Huang, H.-F., & Wu, Y.-T. (2022). Tracking of menstrual cycles and prediction of the fertile window via measurements of basal body temperature and heart rate as well as machine-learning algorithms. Reproductive Biology and Endocrinology, 20(1), 118. https://doi.org/10.1186/s12958-022-00993-4




DOI: https://doi.org/10.7575/aiac.ijkss.v.13n.2p.12

Refbacks

  • There are currently no refbacks.




License URL: https://creativecommons.org/licenses/by/4.0/

2013-2025 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.