Temporal Coordination Strategies in Baseball Hitting: Insights from Stationary vs. Oncoming Ball Analysis
Abstract
Background: A baseball hit involves complex whole-body movements and coordination. Research has focused on batting against stationary balls, and insights have been gained into hitters’ intended strategies. However, synchronizing the bat swing with the flying ball is crucial for an effective hit in game scenarios. Objective: Movement patterns in baseball hitting were analyzed by comparing two batting tasks: hitting a stationary ball on a tee stand (stationary ball hit) and hitting a ball projected by a pitching machine (oncoming ball hit). The study examined whether motor representations elicited in the stationary ball hit were applicable to the oncoming ball hit, and to identify differences in the movement patterns between the two tasks. Methodology: Ten male college baseball players participated in stationary and oncoming ball-hitting tasks. A three-dimensional motion analysis of ball-bat contact locations and hitting movements was conducted. Results: For the stationary ball hit, a high correlation was observed between the depth and course (rrm(79) =.968) or height positions (rrm(79)=.875) of the ball. However, for an oncoming ball hit, the impact depth did not systematically vary with course (rrm(189)=.333) and heights (rrm(189)=.213). Correlation analysis of the duration and timing between the stepping movement and bat swing revealed compensatory timing for starting the bat swing in response to pitch release (rrm(189) = 0.79). Conclusion: The results revealed the temporal coordination of movement for initiating a bat swing at a relatively consistent timing with respect to the flight of pitches. Therefore, the ball was intercepted at a relatively consistent depth location.
Keywords
Full Text:
PDFReferences
Abdel-Aziz, Y. I., & Karara, H. M. (2015). Direct linear transformation from comparator co-ordinates into object space coordinates in close-range photogrammetry. Photogrammetric Engineering & Remote Sensing, February; 81(1), 103-107. doi: 10.14358/PERS.81.2.103
Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers in psychology, 8, Article 456. doi:10.3389/fpsyg.2017.00456
Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20(6), 1372–1385. https://doi.org/10.1093/cercor/bhp200
Brenner, E., & Smeets, J. B. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297-310. doi:10.1080/00222899709600017
Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145. https://doi.org/10.1111/j.1933-1592.2012.00604.x
Cattaneo, L., Caruana, F., Jezzini, A., & Rizzolatti, G. (2009). Representation of goal and movements without overt motor behavior in the human motor cortex: A transcranial magnetic stimulation study. The Journal of Neuroscience, 29(36), 11134–11138. https://doi.org/10.1523/JNEUROSCI.2605-09.2009
Chua, L.-K., Jimenez-Diaz, J., Lewthwaite, R., Kim, T., & Wulf, G. (2021). Superiority of external attentional focus for motor performance and learning: Systematic reviews and meta-analyses. Psychological Bulletin, 147(6), 618-645. doi:10.1037/bul0000335
Czyż, S. H. (2021). Variability of Practice, Information Processing, and Decision Making-How Much Do We Know? Frontiers in psychology, 12, 639131. doi: 10.3389/fpsyg.2021.639131
Cohen, R. G., & Rosenbaum, D. A. (2004). Where grasps are made reveals how grasps are planned: Generation and recall of motor plans. Experimental Brain Research, 157(4), 486–495. https://doi.org/10.1007/s00221-004-1862-9
Daniel, W. W., & Cross, C. L. (2013). Biostatistics: A Foundation for Analysis in the Health Sciences (10th ed.). New Jersey: Wiley. ISBN: 978-1118302798
Fink, P. W., Foo, P. S., & Warren, W. H. (2009). Catching fly balls in virtual reality: a critical test of the outfielder problem. Journal of Vision, 9(13), 1-8. doi: 10.1167/9.13.14
Gibson, J. J. (2014). The Ecological Approach to Visual Perception (Classic Edition ed.). New York: Routledge. ISBN: 978-1848725782
Gray, R. (2020). Changes in movement coordination associated with skill acquisition in baseball batting: Freezing/freeing degrees of freedom and functional variability. Frontiers in Psychology, 11(1295). doi:10.3389/fpsyg.2020.01295
Hamilton, A. F. de C., & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18(5), 1160–1168. https://doi.org/10.1093/cercor/bhm150
Hatze, H. (1988). High-precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT-approach. Journal of Biomechanics, 21(7), 533-8. doi: 10.1016/0021-9290(88)90216-3.
Katsumata, H. (2007). A functional modulation for timing a movement: A coordinative structure in baseball hitting. Human Movement Science, 26, 27–47. doi: 10.1016/j.humov.2006.09.005
Katsumata, H., Hagiwara, T., & Nebashi, K. (2019). Effect of visual occlusion on the accuracy of batting a stationary ball. In E. Welch (Ed.), Essential Topics in Baseball: From Performance Analysis to Injury Prevention (pp. 185-210). NY: Nova Science Publishers. ISBN-10: 1536165336, ISBN-13: 978-1536165333
Katsumata, H., Himi, K., Ino, T., Ogawa, K., & Matsumoto, T. (2017). Coordination of hitting movement revealed in baseball tee-batting. Journal of Sports Science, 35(24), 2468-2480. doi:10.1080/02640414.2016.1275749
Kugler, P. N., & Turvey, M. T. (2015). Information, Natural Law, and the Self-Assembly of Rhythmic Movement. London: UK: Routledge. ISBN: 978-0805800555
Latash, M.L. (2015) The Hand: Shall we ever understand how it works? Motor Control. 19(2):108–126. doi:10.1123/mc.2014-0025.
Ledouit, S., Casanova, R., Zaal, F. T. J. M., & Bootsma, R. J. (2013). Prospective control in catching: the persistent Angle-of-approach effect in lateral interception. Plos One, 8(11). doi: 10.1371/journal.pone.0080827
Lee, D. N., & Young, D.S. (1985). Visual timing of interceptive action. In M. J. D.J. Ingle, & D.N. Lee. (Ed.), Brain Mechanics and Spatial Vision (pp. 1-30). Boston: Martinus Nijhoff Pub. ISBN: 978-9024731176
Meyer, M., Wel, R. P. R. D. van der, & Hunnius, S. (2013). Higher-order action planning for individual and joint object manipulations. Experimental Brain Research, 225(4), 579–588. https://doi.org/10.1007/s00221-012-3398-8
Mylopoulos, M., & Pacherie, e. (2016). Intentions and motor representations: the interface challenge. Review of Philosophy and Psychology, 8: 317-336. doi: https://doi.org/10.1007/s13164-016-0311-6
Profeta, V. L. S., & Turvey, M. T. (2018). Bernstein's levels of movement construction: A contemporary perspective. Human Movement Science, 57, 111-133. doi: 10.1016/j.humov.2017.11.013
Rizzolatti, Giacomo, Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews: Neuroscience, 2(9), 661–670. doi: 10.1038/35090060.
Rizzolatti, Giacomo, & Sinigaglia, C. (2008). Mirrors in the brain: How our minds share actions, emotions. Oxford: Oxford University Press. ISBN: 978-1782326229
Rogers, B. (2021). Optic Flow: Perceiving and Acting in a 3-D World. i-Perception, 12(1), 2041669520987257. doi: 10.1177/2041669520987257
Rosenbaum, D. A. (2009). Human motor control (2nd ed.). San Diego, CA, US: Academic Press. ISBN: 978-0123742261
Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. N. (2018). Motor Control and Learning: A Behavioral Emphasis (6th ed.). Champaign, IL: Human Kinetics. ISBN: 978-1492547754
Schöner, G. (1994). Dynamic theory of action-perception patterns: The time-before-contact paradigm. Human Movement Science, 13(3-4), 415-439. doi: 10.1007/BF00202609.
Schöner, G., & Kelso, S. (1988). A dynamic pattern theory of behavioral change. Journal of Theoretical Biology, 135(4), 501-524. doi: 10.1016/S0022-5193(88)80273-X
Schöner, G. Zanone, P. G., & Kelso, J.A. (1992). Learning as change of coordination dynamics: theory and experiment. Journal of Motor Behaviour, Mar; 24(1): 29-48. doi: 10.1080/00222895.1992.9941599.
Shadmehr, R. (2009). Computational approaches to motor control. Encyclopedia of Neuroscience, 3, 9-17. https://doi.org/10.1016/B978-008045046-9.01311-5
Shadmehr, R., & Wise, S. P. (2005). Computing locations and displacements. In R. Shadmehr & S. P. Wise (Eds.), The computational neurobiology of reaching and pointing (pp. 141–270). Cambridge, MA: The MIT Press. ISBN: 978-0262195089
Shapiro, R. (1978). Direct linear transformation method for three-dimensional cinematography. Research Quarterly, 49(2), 197-205. PMID: 725286
Smeets, J. B., Wijdenes, L. O., & Brenner, E. (2016). Movement adjustments have short latencies because there is no need to detect anything. Motor Control, 20, 137-148. doi: 10.1123/mc.2014-0064
Stewart, E. M., Stewart, M., Simpson, J., Knight, A., Chander, H., & Shapiro, R. (2020). Sequential order of swing phase initiation in baseball. Journal of Sports Analytics, 6, 199-204. doi:10.3233/JSA-200394
Turvey, M. T. (1990). Coordination. American Psychologist, 45(8), 938-953. doi: 10.1037//0003-066x.45.8.938.
Turvey, M. T., & Kugler, P. N. (1984). An ecological approach to perception and action. In H. T. A. Whiting (Ed.), Human Motor Actions - Bernstein Reassessed (pp. 373-412). North-Holland: Elsevier Science Publishers. ISBN: 9780444868138
Warren, H. W. (1990). The perception–action coupling. In H. Bloch & B. I. Bertenthal (Eds.), Sensory-motor organizations and development in infancy and early childhood (pp. 23–37). The Netherlands: Kluwer. ISBN: 978-0792308133
Warren, H. W. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358–389. doi: 10.1037/0033-295X.113.2.358
Welch, C. M., Banks, S. A., Cook, F. F., & Draovitch, P. (1995). Hitting a baseball: a biomechanical description. The Journal of Orthopedic and Sports Physical Therapy, 22(5), 193-201. doi:10.2519/jospt.1995.22.5.193
Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729-732. doi: 10.1016/s0960-9822(01)00432-8
Wolpert, D. M., & Flanagan, J. R. (2010). Motor learning. Current Biology, 20(11), R467-472. https://doi.org/10.1016/j.cub.2010.04.035
Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3 (Supplement), 1212-1217. doi: 10.1038/81497.
Wulf, G. (2007) Attentional focus and motor learning: A review of 10 years of research. E-Journal Bewegung and Training, 1, 1-64.
Wulf, G. (2013). Attentional focus and motor learning: a review of 15 years. International Review of Sport and Exercise Psychology, 6(1), 77-104. doi:10.1080/1750984X.2012.723728
Wulf, G., McConnel, N., Gärtner, M. & Schwarz, A. (2002) Enhancing the learning of sport skills through external-focus feedback. Journal of Motor Behavior, 34, 171-182. doi: 10.1080/00222890209601939.
Wulf, G., Shea, C.H. & Park, J.-H. (2001) Attention in motor learning: Preference for and advantages of an external focus. Research Quarterly for Exercise and Sport, 72, 335-344. doi: 10.1080/02701367.2001.10608970.
Wulf, G. & Su, J. (2007) An external focus of attention enhances golf shot accuracy in beginners and experts. Research Quarterly for Exercise and Sport, 78, (4) 384-389. doi: 10.1080/02701367.2007.10599436.
Zachry, T., Wulf, G., Mercer, J. & Bezodis, N. (2005) Increased movement accuracy and reduced EMG activity as the result of adopting an external focus of attention. Brain Research Bulletin, 67, 304-309. doi: 10.1016/j.brainresbull.2005.06.035.
Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2009). Visuo-motor coordination and internal models for object interception. Experimental Brain Research, 192(4), 571-604. doi: 10.1007/s00221-008-1691-3
DOI: https://doi.org/10.7575/aiac.ijkss.v.12n.2p.68
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by/4.0/
2013-2024 (CC-BY) Australian International Academic Centre PTY.LTD.
International Journal of Kinesiology and Sports Science
You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.