Graded Compression Garments Worn During Resistance Exercise: Impact on Muscle Damage, Fatigue, and Oxygenation in Untrained Individuals

Joshua A. Cotter, Makenzie R. Stade, Bria G. Morse, Evan E. Schick

Abstract


Background: Use of compression garments during and after exercise has gained notable popularity, yet their utility in augmenting performance and recovery from resistance exercise remains elusive. Objective: The purpose of this study was to evaluate the effects of wearing compression garments during resistance exercise on exercise-induced muscle damage (EIMD), muscle fatigue and muscle oxygenation. Methods: Ten healthy, untrained individuals (8 females, 2 males, 22.10 ± 2.23 years, 159.09 ± 3.47 cm, 66.22 ±15.93 kg; mean ± SD) performed two exercise trials in a randomized crossover (within-subject) design: 1) with compression garments worn on the legs and 2) without compression. Exercise trials were randomized and separated by seven days. Participants performed 12 sets of 10 maximal repetitions of knee extension, at a velocity of 120 degrees per second, in the CON/ECC mode of a HUMAC NORM isokinetic dynamometer. Muscle oxygenation of the vastus medialis oblique was assessed using time-resolved near-infrared spectroscopy (TRS-21, Hamamatsu). Leg circumference, ratings of perceived muscle soreness (RPMS) and blood samples for creatine kinase (CK) were collected before, immediately after, and 24, 48 and 72 hours after exercise. Results: Total hemoglobin (p = 0.021) and deoxyhemoglobin (p <0.001) were significantly reduced by 8.6% and 9.2% respectively with compression compared to control. No significant differences were found in oxyhemoglobin, oxygen saturation, muscle fatigue, leg circumference, RPMS and CK (p = 0.0791) between conditions. Conclusions: Although lower body compression worn during resistance exercise reduced total hemoglobin and deoxyhemoglobin, there was no impact on muscle fatigue, RPMS, leg circumference or CK.

Keywords


Creatine Kinase, Isokinetic Dynamometry, Muscle Fatigue, Spectroscopy, Near-Infrared, Resistance Training, Hemodynamics

Full Text:

PDF

References


Akima, H., Takahashi, H., Kuno, S. Y., & Katsuta, S. (2004). Coactivation pattern in human quadriceps during isokinetic knee-extension by muscle functional MRI. European Journal of Applied Physiology, 91(1), 7-14. http://dx.doi.org/10.1007/s00421-003-0942-z

Ali, A., Caine, M. P., & Snow, B. G. (2007). Graduated compression stockings: physiological and perceptual responses during and after exercise. Journal of Sports Sciences, 25(4), 413-419. http://dx.doi.org/10.1080/02640410600718376

Baird, M. F., Graham, S. M., Baker, J. S., & Bickerstaff, G. F. (2012). Creatine-kinase-and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism. http://doi.org/10.1155/2012/960363

Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes. Sports Medicine, 36(9), 781-796. http://doi.org/10.2165/00007256-200636090-00005

Bieuzen, F., Brisswalter, J., Easthope, C., Vercruyssen, F., Bernard, T., & Hausswirth, C. (2014). Effect of wearing compression stockings on recovery after mild exercise-induced muscle damage. International Journal of Sports Physiology and Performance, 9(2), 256-264. http://dx.doi.org/10.1123/ijspp.2013-0126

Born, D.-P., Sperlich, B., & Holmberg, H.-C. (2013). Bringing light into the dark: Effects of compression clothing on performance and recovery. International Journal of Sports Physiology and Performance, 8(1), 4-18. http://doi.org/10.1123/ijspp.8.1.4

Chapman, D., Newton, M., Sacco, P., & Nosaka, K. (2006). Greater muscle damage induced by fast versus slow velocity eccentric exercise. International Journal of Sports Medicine, 27(8), 591-598. http://dx.doi.org/10.1055/s-2005-865920

Chatard, J. C., Atlaoui, D., Farjanel, J., Louisy, F., Rastel, D., & Guezennec, C. Y. (2004). Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. European Journal of Applied Physiology, 93(3), 347-352. http://dx.doi.org/10.1007/s00421-004-1163-9

Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation, 81(11), S52-S69. http://doi.org/10.1097/00002060-200211001-00007

Davies, V., Thompson, K. G., & Cooper, S. M. (2009). The effects of compression garments on recovery. The Journal of Strength & Conditioning Research, 23(6), 1786-1794. http://dx.doi.org/10.1519/JSC.0b013e3181b42589

de Ruiter, C. J., de Boer, M. D., Spanjaard, M., & de Haan, A. (2005). Knee angle-dependent oxygen consumption during isometric contractions of the knee extensors determined with near-infrared spectroscopy. Journal of Applied Physiology, 99(2), 579-586. http://dx.doi.org/10.1152/japplphysiol.01420.2004

Doan, B. K., Kwon, Y. H., Newton, R. U., Shim, J., Popper, E. M., Rogers, R. A., . . . Kraemer, W. J. (2003). Evaluation of a lower-body compression garment. Journal of Sports Sciences, 21(8), 601-610. http://dx.doi.org/10.1080/0264041031000101971

Fan, X., Li, D., Zhang, Y., & Green, T. A. (2013). Differential phosphoproteome regulation of nucleus accumbens in environmentally enriched and isolated rats in response to acute stress. PLoS One, 8(11), e79893. http://doi.org/10.1371/journal.pone.0079893

Friden, J., Sjostrom, M., & Ekblom, B. (1983). Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine, 4(3), 170-176. http://dx.doi.org/10.1055/s-2008-1026030

Ganesan, G., Cotter, J. A., Reuland, W., Cerussi, A. E., Tromberg, B. J., & Galassetti, P. (2015). Effect of blood flow restriction on tissue oxygenation during knee extension. Medicine & Science in Sports & Exercise, 47(1), 185-193. http://dx.doi.org/10.1249/MSS.0000000000000393

Gill, N. D., Beaven, C. M., & Cook, C. (2006). Effectiveness of post-match recovery strategies in rugby players. British Journal of Sports Medicine, 40(3), 260-263. http://dx.doi.org/10.1136/bjsm.2005.022483

Goto, K., & Morishima, T. (2014). Compression garment promotes muscular strength recovery after resistance exercise. Medicine & Science in Sports & Exercise, 46(12), 2265-2270. http://dx.doi.org/10.1249/MSS.0000000000000359

Hill, J., Howatson, G., van Someren, K., Leeder, J., & Pedlar, C. (2014). Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. British Journal of Sports Medicine, 48(18), 1340-1346. http://dx.doi.org/10.1136/bjsports-2013-092456

Jakeman, J. R., Byrne, C., & Eston, R. G. (2010). Lower limb compression garment improves recovery from exercise-induced muscle damage in young, active females. European Journal of Applied Physiology, 109(6), 1137-1144. http://dx.doi.org/10.1007/s00421-010-1464-0

Kerherve, H. A., Samozino, P., Descombe, F., Pinay, M., Millet, G. Y., Pasqualini, M., & Rupp, T. (2017). Calf compression sleeves change biomechanics but not performance and physiological responses in trail running. Frontiers in Physiology, 8, 247. http://dx.doi.org/10.3389/fphys.2017.00247

Kraemer, W. J., Bush, J. A., Bauer, J. A., Tripleft-McBride, N., Paxton, N. J., Clemson, A., . . . Newton, R. U. (1996). Influence of compression garments on vertical jump performance in NCAA Division I volleyball players. The Journal of Strength & Conditioning Research, 10, 180-183.

Kraemer, W. J., Bush, J. A., Triplett-McBride, N. T., Perry Koziris, L., Mangino, L. C., Fry, A. C., . . . Young, C. A. (1998). Compression garments: Influence on muscle fatigue. The Journal of Strength & Conditioning Research, 12, 211-215.

Kraemer, W. J., Bush, J. A., Wickham, R. B., Denegar, C. R., Gomez, A. L., Gotshalk, L. A., . . . Sebastianelli, W. J. (2001). Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. Journal of Orthopaedic & Sports Physical Therapy, 31(6), 282-290. http://dx.doi.org/10.2519/jospt.2001.31.6.282

Kraemer, W. J., Flanagan, S. D., Comstock, B. A., Fragala, M. S., Earp, J. E., Dunn-Lewis, C., . . . Maresh, C. M. (2010). Effects of a whole body compression garment on markers of recovery after a heavy resistance workout in men and women. The Journal of Strength & Conditioning Research, 24(3), 804-814. http://dx.doi.org/10.1519/JSC.0b013e3181d33025

Lawrence, D., & Kakkar, V. (1980). Graduated, static, external compression of the lower limb: a physiological assessment. British Journal of Surgery, 67(2), 119-121. http://doi.org/10.1002/bjs.1800670214

Liu, R., Lao, T. T., Kwok, Y. L., Li, Y., & Ying, M. T.-C. (2008). Effects of graduated compression stockings with different pressure profiles on lower-limb venous structures and haemodynamics. Advances in Therapy, 25(5), 465-478. http://doi.org/10.1007/s12325-008-0058-2

MacRae, B. A., Cotter, J. D., & Laing, R. M. (2011). Compression garments and exercise: garment considerations, physiology and performance. Sports Medicine, 41(10), 815-843. http://dx.doi.org/10.2165/11591420-000000000-00000

Marques-Jimenez, D., Calleja-Gonzalez, J., Arratibel, I., Delextrat, A., & Terrados, N. (2016). Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiology & Behavior, 153, 133-148. http://dx.doi.org/10.1016/j.physbeh.2015.10.027

Martorelli, S. S., Martorelli, A. S., Pereira, M. C., Rocha-Junior, V. A., Tan, J. G., Alvarenga, J. G., . . . Bottaro, M. (2015). Graduated compression sleeves: effects on metabolic removal and neuromuscular performance. The Journal of Strength & Conditioning Research, 29(5), 1273-1278. http://dx.doi.org/10.1519/JSC.0000000000000401

McHugh, M. P. (2003). Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scandinavian Journal of Medicine & Science in Sports, 13(2), 88-97. http://doi.org/10.1034/j.1600-0838.2003.02477.x

Messere, A., & Roatta, S. (2013). Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy. Physiological Reports, 1(7), e00179. http://dx.doi.org/10.1002/phy2.179

Paschalis, V., Koutedakis, Y., Baltzopoulos, V., Mougios, V., Jamurtas, A. Z., & Giakas, G. (2005). Short vs. long length of rectus femoris during eccentric exercise in relation to muscle damage in healthy males. Clinical Biomechanics, 20(6), 617-622. http://dx.doi.org/10.1016/j.clinbiomech.2005.02.011

Patterson, S. D., & Ferguson, R. A. (2010). Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. European Journal of Applied Physiology, 108(5), 1025-1033. http://doi.org/10.1007/s00421-009-1309-x

Prior, B. M., Yang, H., & Terjung, R. L. (2004). What makes vessels grow with exercise training? Journal of Applied Physiology, 97(3), 1119-1128. http://doi.org/10.1152/japplphysiol.00035.2004

Pruscino, C. L., Halson, S., & Hargreaves, M. (2013). Effects of compression garments on recovery following intermittent exercise. European Journal of Applied Physiology, 113(6), 1585-1596. http://dx.doi.org/10.1007/s00421-012-2576-5

Scanlan, A. T., Dascombe, B. J., Reaburn, P. R., & Osborne, M. (2008). The effects of wearing lower-body compression garments during endurance cycling. International Journal of Sports Physiology and Performance, 3(4), 424-438. http://dx.doi.org/10.1123/ijspp.3.4.424

Sear, J. A., Hoare, T. K., Scanlan, A. T., Abt, G. A., & Dascombe, B. J. (2010). The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. The Journal of Strength & Conditioning Research, 24(7), 1901-1910. http://dx.doi.org/10.1519/JSC.0b013e3181db251b

Totsuka, M., Nakaji, S., Suzuki, K., Sugawara, K., & Sato, K. (2002). Break point of serum creatine kinase release after endurance exercise. Journal of Applied Physiology, 93(4), 1280-1286. http://dx.doi.org/10.1152/japplphysiol.01270.2001

Trenell, M. I., Rooney, K. B., Sue, C. M., & Thomspon, C. H. (2006). Compression garments and recovery from eccentric exercise: A 31P-MRS study. Journal of Sports Science and Medicine, 5(1), 106-114.

Troynikov, O., Ashayeri, E., Burton, M., Subic, A., Alam, F., & Marteau, S. (2010). Factors influencing the effectiveness of compression garments used in sports. Procedia Engineering, 2(2), 2823-2829. http://doi.org/10.1016/j.proeng.2010.04.073

Van Beekvelt, M. C., Colier, W. N., Wevers, R. A., & Van Engelen, B. G. (2001). Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle. Journal of Applied Physiology, 90(2), 511-519. http://doi.org/10.1152/jappl.2001.90.2.511

Wellek, S., & Blettner, M. (2012). On the proper use of the crossover design in clinical trials: part 18 of a series on evaluation of scientific publications. Deutsches Arzteblatt International, 109(15), 276–281. http://doi.org/10.3238/arztebl.2012.0276




DOI: https://doi.org/10.7575/aiac.ijkss.v.10n.2p.51

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2025 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.