Ground Reaction Force Comparison Between Barefoot and Shod Single Leg Landing at Varied Heights
Abstract
Background: Landing is a common movement that occurs in many sports. Barefoot research has gained popularity in examining how shoes alter natural movements. However, it is unknown how a single leg landing under barefoot conditions, as well as landing height, affects ground reaction forces (GRF). Objective: The purpose of this research was to examine the differences in GRF during a single leg landing under barefoot and shod conditions from various heights. Methods: Sixteen female Division II collegiate athletes, 8 basketball (age: 19.88 ± 0.64 yrs; height: 1.77 ± 0.09 m; mass: 75.76 ± 12.97 kg) and 8 volleyball (age: 20.00 ± 1.07 yrs; height: 1.74 ± 0.08 m; mass: 72.41 ± 5.41 kg), performed single leg landings from 12, 18, 24, and 30 inches barefoot and shod. An AMTI AccuGait force plate was used to record GRF. A 2 (condition) x 4 (box height) x 2 (sport) repeated measures ANOVA was performed to determine any GRF differences. Results: There were no significant three way or two-way interactions (p > 0.05). There was also no main effect for sport (p > 0.05). There were main effects for footwear and box height (p = 0.000) where shod (2295.121 ± 66.025 N) had greater impact than barefoot (2090.233 ± 62.684 N). Conclusions: Single leg barefoot landings resulted in less vertical GRF than shod landings. This could be due to increased flexion at the joints which aids in force absorption.
Keywords
Full Text:
PDFReferences
Arampatzis, A., Morey-Klapsing, G., & Brüggemann, G. P. (2003). The effect of falling height on muscle activity and foot motion during landings. Journal of Electromyography and Kinesiology, 13(6), 533-544. Doi: 10.1016/S1050-6411(03)00059-2
Ball, N. B., Stock, C. G., & Scurr, J. C. (2010). Bilateral contact ground reaction forces and contact times during plyometric drop jumping. The Journal of Strength & Conditioning Research, 24(10), 2762-2769. Doi:10.1519/JSC.0b013e3181cc2408
Buhagiar, K., Shadmi, A., Schiller, L., Schwartzer, K., & Woychick, S. (2018, April 4). Differences in sagittal plane joint angles between shod and barefoot landing from a drop jump [Presentation]. Whalen Symposia, Ithaca College. https://digitalcommons.ithaca.edu/whalen/2018/presentations/84/
Decker, M. J., Torry, M. R., Wyland, D. J., Sterett, W. I., & Steadman, J. R. (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinical Biomechanics, 18(7), 662-669. Doi: 10.1016/S0268-0033(03)00090-1
Derrick, T. R. (2004). The effects of knee contact angle on impact forces and accelerations. Medicine and Science in Sports and Exercise, 36(5), 832-837. Doi: 10.1249/01.MSS.0000126779.65353.CB
Fagenbaum, R., & Darling, W. G. (2003). Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury. The American Journal of Sports Medicine, 31(2), 233-240. Doi: 0363-5465/103/3131-0233$02.00/0
Fu, W., Fang, Y., Gu, Y., Huang, L., Li, L., & Liu, Y. (2017). Shoe cushioning reduces impact and muscle activation during landings from unexpected, but not self-initiated, drops. Journal of Science and Medicine in Sport, 20(10), 915-920. Doi: http://dx.doi.org/10.1016/j.jsams.2017.03.009
Harry, J. R., Paquette, M. R., Caia, J., Townsend, R. J., Weiss, L. W., & Schilling, B. K. (2015). Effects of footwear condition on maximal jumping performance. The Journal of Strength & Conditioning Research, 29(6), 1657-1665. Doi: 10.1519/JSC.0000000000000813
Hong, Y. G., Yoon, Y. J., Kim, P., & Shin, C. S. (2014). The kinematic/kinetic differences of the knee and ankle joint during single-leg landing between shod and barefoot condition. International Journal of Precision Engineering and Manufacturing, 15(10), 2193-2197. Doi: 10.1007/s12541-014-0581-9
Koyama, K., & Yamauchi, J. (2018). Comparison of lower limb kinetics, kinematics and muscle activation during drop jumping under shod and barefoot conditions. Journal of Biomechanics, 69, 47-53. Doi: https://doi.org/10.1016/j.jbiomech.2018.01.011
LaPorta, J. W., Brown, L. E., Coburn, J. W., Galpin, A. J., Tufano, J. J., Cazas, V. L., & Tan, J. G. (2013). Effects of different footwear on vertical jump and landing parameters. The Journal of Strength & Conditioning Research, 27(3), 733-737. Doi: 10.1519/JSC.0b013e318280c9ce
Logan, S., Hunter, I., Hopkins, J. T., Feland, J. B., & Parcell, A. C. (2010). Ground reaction force differences between running shoes, racing flats, and distance spikes in runners. Journal of Sports Science & Medicine, 9(1), 147. Retrieved from https://www.jssm.org/jssm-09-147.xml%3Eabst
Louw, Q., Grimmer, K., & Vaughan, C. (2006). Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study. BMC Musculoskeletal Disorders, 7(1), 22. Doi: https://doi.org/10.1186/1471-2474-7-22
McNair, P. J., & Prapavessis, H. (1999). Normative data of vertical ground reaction forces during landing from a jump. Journal of Science and Medicine in Sport, 2(1), 86-88. Doi: https://doi.org/10.1016/S1440-2440(99)80187-X
Nin, D. Z., Lam, W. K., & Kong, P. W. (2016). Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvers. Journal of Sports Sciences, 34(8), 756-765. Doi: https://doi.org/10.1080/02640414.2015.1069381
Read M. M., Cisar C. (2001) The influence of varied rest interval lengths on depth jump performance. Journal of Strength and Conditioning Research. 15(3), 279-283. Doi: 10.1519/1533-4287(2001)015<0279:tiovri>2.0.co;2.
Robbins, S., Waked, E., & McClaran, J. (1995). Proprioception and stability: foot position awareness as a function of age and footware. Age and Ageing, 24(1), 67-72. Doi: https://doi.org/10.1093/ageing/24.1.67
Schmitz, R. J., Kulas, A. S., Perrin, D. H., Riemann, B. L., & Shultz, S. J. (2007). Sex differences in lower extremity biomechanics during single leg landings. Clinical Biomechanics, 22(6), 681-688. Doi: https://doi.org/10.1016/j.clinbiomech.2007.03.001
Self, B. P., & Paine, D. (2001). Ankle biomechanics during four landing techniques. Medicine and Science in Sports and Exercise, 33(8), 1338-1344. Doi: 10.1097/00005768-200108000-00015
Shultz, S. J., Schmitz, R. J., Tritsch, A. J., & Montgomery, M. M. (2012). Methodological considerations of task and shoe wear on joint energetics during landing. Journal of Electromyography and Kinesiology, 22(1), 124-130. Doi: https://doi.org/10.1016/j.jelekin.2011.11.001
Sinclair, J., Hobbs, S. J., & Selfe, J. (2015). The influence of minimalist footwear on knee and ankle load during depth jumping. Research in Sports Medicine, 23(3), 289-301. https://doi.org/10.1080/15438627.2015.1040917
Slater, A., Campbell, A., Smith, A., & Straker, L. (2015). Greater lower limb flexion in gymnastic landings is associated with reduced landing force: A repeated measures study. Sports Biomechanics, 14(1), 45-56. Doi: https://doi.org/10.1080/14763141.2015.1029514
Tran, T. T., Lundgren, L., Secomb, J., Farley, O. R., Haff, G. G., Newton, R. U., Nimphius, S., & Sheppard, J. M. (2015). Development and evaluation of a drop-and-stick method to assess landing skills in various levels of competitive surfers. International Journal of Sports Physiology and Performance, 10(3), 396-400. Doi: https://doi.org/10.1123/ijspp.2014-0375
Wei, Q., Wang, Z., Woo, J., Liebenberg, J., Park, S. K., Ryu, J., & Lam, W. K. (2018). Kinetics and perception of basketball landing in various heights and footwear cushioning. PloS one, 13(8), e0201758. Doi: https://doi.org/10.1371/journal.pone.0201758
Yeow, C. H., Lee, P. V. S., & Goh, J. C. H. (2009). Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints. Journal of Biomechanics, 42(12), 1967-1973. Doi: https://doi.org/10.1016/j.jbiomech.2009.05.017
Yeow, C. H., Lee, P. V. S., & Goh, J. C. H. (2011). Shod landing provides enhanced energy dissipation at the knee joint relative to barefoot landing from different heights. The Knee, 18(6), 407-411. Doi: https://doi.org/10.1016/j.knee.2010.07.011
Zech, A., Argubi-Wollesen, A., & Rahlf, A. L. (2015). Minimalist, standard and no footwear on static and dynamic postural stability following jump landing. European Journal of Sport Science, 15(4), 279-285. Doi: https://doi.org/10.1080/17461391.2014.936322
Zhang, S., Clowers, K., Kohstall, C., & Yu, Y. J. (2005). Effects of various midsole densities of basketball shoes on impact attenuation during landing activities. Journal of Applied Biomechanics, 21(1), 3-17. Doi: https://doi.org/10.1123/jab.21.1.3
DOI: https://doi.org/10.7575/aiac.ijkss.v.9n.4p.29
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
2013-2024 (CC-BY) Australian International Academic Centre PTY.LTD.
International Journal of Kinesiology and Sports Science
You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.