Comparison of Physical Activity Level, Body Composition, Strength, and Flexibility of Teen Basketball Players and Adolescents Non-Practitioners of Sport: An Observational Study with Machine Learning Analysis

Samuel Gonçalves Almeida da Encarnação, Vitor Hugo Santos Rezende, Iarni Martins Gonçalves, Patrícia de Oliveira Ramalho Prata, Henrique Novais Mansur, Tatiana Sampaio, Pedro Forte, José Eduardo Teixeira, António Miguel Monteiro, Ana Paula Muniz Guttierres

Abstract


Background: Increasing youths’ physical activity is mandatory to reduce the risk of non-communicable diseases (NCCDs). Basketball is a team sport that is potentially positive in increasing teenagers’ physical performance, health indicators, and well-being. Objective: The objective was to compare the physical activity level (PAL), body composition, strength, and flexibility of teen male basketball players (BG) (n = 15) and adolescent non-practitioners of sport (NS: n = 14). Methodology: All participants were healthy and free from any health disability from a Brazilian high school. A linear regression machine learning algorithm was applied to predict the adolescent´s physical components. In a quasi-experimental analysis, data were extracted by PAL, body fat percentage (BF%), handgrip strength (HG), back extensor muscle’s’ strength (BMS), lower limb power (LLP), and lower limb flexibility (LLF). Parametric (independent T-test) and non-parametric (Mann-Whitney U test) were employed to compare the variable’s average and chi-square was applied to compare categorical data. Results: BG presented an upper number of adolescents classified with high PAL than the NS group (p = 0.0002, large ES, V = 0.73) and a lower number of adolescents classified with low PAL than the NS group (p = 0.0002, V = 0.73), less BF% (p = 0.02, r = 0.85), greater values of HGS (p = 0.005, r = 0.34), greater values of BMSLS (p = 0.005, r = 0.33), greater values of LLP (p = 0.007, r = 0.30), and greater values for LLF (p = 0.02, r = 0.17). Therefore, there was a positive effect of high PAL compared with low PAL in HG, (p = 0.005, r = 0.24) and also for high PAL in LLF, (High PAL: (p = 0.006, r = 0.23). Regarding machine learning analysis, the four models (linear regression, Ridge regression, random forest regression, and Bayesian regression) expressed good generalization performance, with a coefficient of determination (R2) ranging from 0.77 to 0.88, root mean square error (RMSE) from 1.01 to 3.92, with an average mean difference of four points between the predicted and real values. The worst model was random forest regression R2 = 0.77, RMSE = 3.92, and the best model was Bayesian regression (R2 = 0.88, RMSE = 1.01). Conclusion: The BG group presented better results than the NS group for PAL, BF%, HG, BMS, LLP, and LLF. Body fat percentage precisely predicted the player’s’ vertical jump (VJ). In addition to the physical superiority of the BG, this study revealed the importance of managing body composition for both health and performance improvements.

Keywords


Teenagers, Athletic, Sports Performance, Physical Activity Level

Full Text:

PDF

References


Almeida-Neto, P. F. de, Oliveira, V. M. M., Matos, D. G. de, Santos, Í. K. dos, Baxter-Jones, A., Pinto, V. C. M., Cesário, T. de M., Aidar, F. J., Dantas, P. M. S., & Cabral, B. G. de A. T. (2021). Factors related to lower limb performance in children and adolescents aged 7 to 17 years: A systematic review with meta-analysis. PLOS ONE, 16(10), e0258144. https://doi.org/10.1371/journal.pone.0258144

Caia, J., Weiss, L. W., Chiu, L. Z. F., Schilling, B. K., Paquette, M. R., & Relyea, G. E. (2016). Do Lower-Body Dimensions and Body Composition Explain Vertical Jump Ability? Journal of Strength and Conditioning Research, 30(11), 3073–3083. https://doi.org/10.1519/JSC.0000000000001406

Castagna, C., Krustrup, P., & Póvoas, S. (2020). Cardiovascular fitness and health effects of various types of team sports for adult and elderly inactive individuals—A brief narrative review. Progress in Cardiovascular Diseases, 63(6), 709–722. https://doi.org/10.1016/j.pcad.2020.11.005

Castillo, D., Raya-González, J., Scanlan, A. T., Sánchez-Díaz, S., Lozano, D., & Yanci, J. (2021). The influence of physical fitness attributes on external demands during simulated basketball matches in youth players according to age category. Physiology & Behavior, 233, 113354. https://doi.org/10.1016/j.physbeh.2021.113354

Castro, J. B. de, Lima, V. P., Mello, D. B. de, Lopes, G. C., Peixoto, J. C., Santos, A. O. D., Nunes, R. A. de, & Souza Vale, R. G. de. (2022). Effects of Pilates with and without elastic resistance on health variables in postmenopausal women with low back pain. Pain Management, 12(4), 509–520. https://doi.org/10.2217/pmt-2021-0042

Cejudo, A., Moreno-Alcaraz, V. J., De Ste Croix, M., Santonja-Medina, F., & Sainz de Baranda, P. (2020). Lower-Limb Flexibility Profile Analysis in Youth Competitive Inline Hockey Players. International Journal of Environmental Research and Public Health, 17(12), 4338. https://doi.org/10.3390/ijerph17124338

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247–1250.

Chang, C. R., Russell, B. M., Dempsey, P. C., Christie, H. E., Campbell, M. D., & Francois, M. E. (2020). Accumulating Physical Activity in Short or Brief Bouts for Glycemic Control in Adults With Prediabetes and Diabetes. Canadian Journal of Diabetes, 44(8), 759–767. https://doi.org/10.1016/j.jcjd.2020.10.013

Chaput, J.-P., Willumsen, J., Bull, F., Chou, R., Ekelund, U., Firth, J., Jago, R., Ortega, F. B., & Katzmarzyk, P. T. (2020). 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17 years: Summary of the evidence. The International Journal of Behavioral Nutrition and Physical Activity, 17(1), 141. https://doi.org/10.1186/s12966-020-01037-z

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.

Cui, Y., Liu, F., Bao, D., Liu, H., Zhang, S., & Gómez, M.-Á. (2019). Key Anthropometric and Physical Determinants for Different Playing Positions During National Basketball Association Draft Combine Test. Frontiers in Psychology, 10. https://www.frontiersin.org/article/10.3389/fpsyg.2019.02359

de Lima, T. R., Martins, P. C., Torre, G. L., Mannocci, A., Silva, K. S., & Silva, D. A. S. (2021). Association between muscle strength and risk factors for metabolic syndrome in children and adolescents: A systematic review. Journal of Pediatric Endocrinology & Metabolism: JPEM, 34(1), 1–12. https://doi.org/10.1515/jpem-2020-0135

DiFiori, J. P., Güllich, A., Brenner, J. S., Côté, J., Hainline, B., Ryan, E., & Malina, R. M. (2018). The NBA and Youth Basketball: Recommendations for Promoting a Healthy and Positive Experience. Sports Medicine, 48(9), 2053–2065. https://doi.org/10.1007/s40279-018-0950-0

Dooley, F. L., Kaster, T., Fitzgerald, J. S., Walch, T. J., Annandale, M., Ferrar, K., Lang, J. J., Smith, J. J., & Tomkinson, G. R. (2020). A Systematic Analysis of Temporal Trends in the Handgrip Strength of 2,216,320 Children and Adolescents Between 1967 and 2017. Sports Medicine (Auckland, N.Z.), 50(6), 1129–1144. https://doi.org/10.1007/s40279-020-01265-0

Dwyer, D. B., Kempe, M., & Knobbe, A. (2022). Editorial: Using Artificial Intelligence to Enhance Sport Performance. Frontiers in Sports and Active Living, 4, 886730. https://doi.org/10.3389/fspor.2022.886730

Elagizi, A., Kachur, S., Carbone, S., Lavie, C. J., & Blair, S. N. (2020). A Review of Obesity, Physical Activity, and Cardiovascular Disease. Current Obesity Reports, 9(4), 571–581. https://doi.org/10.1007/s13679-020-00403-z

Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. Sage publications.

García-Hermoso, A., Ramírez-Campillo, R., & Izquierdo, M. (2019). Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports Medicine (Auckland, N.Z.), 49(7), 1079–1094. https://doi.org/10.1007/s40279-019-01098-6

Gualdi-Russo, E., Rinaldo, N., & Zaccagni, L. (2022). Physical Activity and Body Image Perception in Adolescents: A Systematic Review. International Journal of Environmental Research and Public Health, 19(20), 13190. https://doi.org/10.3390/ijerph192013190

Guedes, D. P. (2006). Manual prático para avaliação em educação física. Editora Manole Ltda.

Guedes, D. P., Lopes, C. C., & Guedes, J. E. R. P. (2005). Reprodutibilidade e validade do Questionário Internacional de Atividade Física em adolescentes. Revista Brasileira de Medicina do Esporte, 11, 151–158. https://doi.org/10.1590/S1517-86922005000200011

Guthold, S., Riley, Bull. (2020). Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants—The Lancet Child & Adolescent Health. https://www.thelancet.com/journals/lanchi/article/PIIS2352-4642(19)30323-2/fulltext

Habehh, H., & Gohel, S. (2021). Machine Learning in Healthcare. Current Genomics, 22(4), 291–300. https://doi.org/10.2174/1389202922666210705124359

Hannan, M., Kringle, E., Hwang, C.-L., & Laddu, D. (2021). Behavioral Medicine for Sedentary Behavior, Daily Physical Activity, and Exercise to Prevent Cardiovascular Disease: A Review. Current Atherosclerosis Reports, 23(9), 48. https://doi.org/10.1007/s11883-021-00948-x

Haslwanter, T. (2016). An Introduction to Statistics with Python. With Applications in the Life Sciences. Switzerland: Springer International Publishing.

He, H., Pan, L., Du, J., Liu, F., Jin, Y., Ma, J., Wang, L., Jia, P., Hu, Z., & Shan, G. (2019). Muscle fitness and its association with body mass index in children and adolescents aged 7–18 years in China: A cross-sectional study. BMC Pediatrics, 19(1), 101. https://doi.org/10.1186/s12887-019-1477-8

Jung, K., Jung, J., In, T., & Cho, H. (2020). The Effectiveness of Trunk Stabilization Exercise Combined with Vibration for Adolescent Patients with Nonspecific Low Back Pain. International Journal of Environmental Research and Public Health, 17(19), 7024. https://doi.org/10.3390/ijerph17197024

Li, L., & Moosbrugger, M. E. (2021). Correlations between Physical Activity Participation and the Environment in Children and Adolescents: A Systematic Review and Meta-Analysis Using Ecological Frameworks. International Journal of Environmental Research and Public Health, 18(17), 9080. https://doi.org/10.3390/ijerph18179080

Liu, Z., & Kan, J. (2021). Effect of Basketball on Improving the Health of Obese People under the Monitoring of Internet of Things Technology. Mobile Information Systems, 2021, e9525062. https://doi.org/10.1155/2021/9525062

Maligianni, I., C, Y., F, B., & G, C. (2021). The Potential Role of Exosomes in Child and Adolescent Obesity. Children (Basel, Switzerland), 8(3). https://doi.org/10.3390/children8030196

Mancha-Triguero, D., García-Rubio, J., Calleja-González, J., & Ibáñez, S. J. (2019). Physical fitness in basketball players: A systematic review. The Journal of Sports Medicine and Physical Fitness, 59(9), 1513–1525. https://doi.org/10.23736/S0022-4707.19.09180-1

Morais, L. da C., Paravidino, V. B., Mediano, M. F. F., Benthroldo, R., Gonçalves, T. R., Sgambato, M. R., de Souza, B. da S. N., Junior, E. V., Marques, E. S., Pereira, R. A., Sichieri, R., & Cunha, D. B. (2021). Effectiveness of a school-based randomized controlled trial aimed at increasing physical activity time in adolescents. European Journal of Public Health, 31(2), 367–372. https://doi.org/10.1093/eurpub/ckab025

Pfeifer, J. H., & Berkman, E. T. (2018). The Development of Self and Identity in Adolescence: Neural Evidence and Implications for a Value-Based Choice Perspective on Motivated Behavior. Child development perspectives, 12(3), 158–164. https://doi.org/10.1111/cdep.12279

Ramírez-Vélez, R., Tordecilla-Sanders, A., Correa-Bautista, J. E., Peterson, M. D., & Garcia-Hermoso, A. (2016). Handgrip Strength and Ideal Cardiovascular Health among Colombian Children and Adolescents. The Journal of Pediatrics, 179, 82-89. e1. https://doi.org/10.1016/j.jpeds.2016.08.099

Ribeiro, B. G., Mota, H. R., Sampaio-Jorge, F., Morales, A. P., & Leite, T. C. (2015). Correlation between body composition and the performance of vertical jumps in basketball players. Journal of Exercise Physiology Online, 18(5), 69–79.

Sacot, A., López-Ros, V., Prats-Puig, A., Escosa, J., Barretina, J., & Calleja-González, J. (2022). Multidisciplinary Neuromuscular and Endurance Interventions on Youth Basketball Players: A Systematic Review with Meta-Analysis and Meta-Regression. International Journal of Environmental Research and Public Health, 19(15), 9642. https://doi.org/10.3390/ijerph19159642

Sánchez-Díaz, S., Yanci, J., Raya-González, J., Scanlan, A. T., & Castillo, D. (2021). A Comparison in Physical Fitness Attributes, Physical Activity Behaviors, Nutritional Habits, and Nutritional Knowledge Between Elite Male and Female Youth Basketball Players. Frontiers in Psychology, 12. https://www.frontiersin.org/article/10.3389/fpsyg.2021.685203

Schmitz, A., Silder, A., Heiderscheit, B., Mahoney, J., & Thelen, D. G. (2009). Differences in lower-extremity muscular activation during walking between healthy older and young adults. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 19(6), 1085–1091. https://doi.org/10.1016/j.jelekin.2008.10.008

Shen, C., Dumontheil, I., Thomas, M., Röösli, M., Elliott, P., & Toledano, M. (2021). Digital Technology Use and BMI: Evidence From a Cross-sectional Analysis of an Adolescent Cohort Study. Journal of Medical Internet Research, 23(7), e26485. https://doi.org/10.2196/26485

Slaughter, M. H., Lohman, T. G., Boileau, Ra., Horswill, C. A., Stillman, R. J., Van Loan, M. D., & Bemben, D. A. (1988). Skinfold equations for estimation of body fatness in children and youth. Human biology, 709–723.

Soysal, P., Hurst, C., Demurtas, J., Firth, J., Howden, R., Yang, L., Tully, M. A., Koyanagi, A., Ilie, P. C., López-Sánchez, G. F., Schwingshackl, L., Veronese, N., & Smith, L. (2021). Handgrip strength and health outcomes: Umbrella review of systematic reviews with meta-analyses of observational studies. Journal of Sport and Health Science, 10(3), 290–295. https://doi.org/10.1016/j.jshs.2020.06.009

Unpingco, J. (2016). Python for probability, statistics, and machine learning (Vol. 1). Springer.

Wells, J. C. K., & Shirley, M. K. (2016). Body composition and the monitoring of non-communicable chronic disease risk. Global Health, Epidemiology and Genomics, 1, e18. https://doi.org/10.1017/gheg.2016.9

WHO. (2018). World Health Organization. Global action plan on physical activity 2018– 2030: More active p—Pesquisa Google Search. https://www.google.com/search?q=World+Health+Organization.+Global+action+plan+on+physical+activity+2018%E2%80%93+2030%3A+more+active+p&oq=World+Health+Organization.+Global+action+plan+on+physical+activity+2018%E2%80%93+2030%3A+more+active+p&aqs=chrome..69i57.193j0j7&sourceid=chrome&ie=UTF-8

Woessner, M. N., Tacey, A., Levinger-Limor, A., Parker, A. G., Levinger, P., & Levinger, I. (2021). The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward. Frontiers in Public Health, 9, 655491. https://doi.org/10.3389/fpubh.2021.655491

Woodforde, J., Alsop, T., Salmon, J., Gomersall, S., & Stylianou, M. (2021). Effects of school-based before-school physical activity programmes on children’s physical activity levels, health and learning-related outcomes: A systematic review. British Journal of Sports Medicine, bjsports-2021-104470. https://doi.org/10.1136/bjsports-2021-104470

Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179




DOI: https://doi.org/10.7575/aiac.ijkss.v.12n.2p.11

Refbacks

  • There are currently no refbacks.




License URL: https://creativecommons.org/licenses/by/4.0/

2013-2025 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.