Ipsilateral and Contralateral Torque Responses to Bilateral and Unilateral Maximal, Fatiguing, Isokinetic Leg Extensions
Abstract
Keywords
Full Text:
PDFReferences
Aboodarda, S. J., Šambaher, N., & Behm, D. G. (2015). Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii. Scandinavian Journal of Medicine & Science in Sports, 26(11), 1301–1312. https://doi.org/10.1111/sms.12596
Amann, M., Venturelli, M., Ives, S. J., McDaniel, J., Layec, G., Rossman, M. J., & Richardson, R. S. (2013). Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. Journal of Applied Physiology, 115(3), 355–364. https://doi.org/10.1152/japplphysiol.00049.2013
Anders, J. P. V., Keller, J. L., Smith, C. M., Hill, E. C., Neltner, T. J., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2020a). Performance fatigability and neuromuscular responses for bilateral and unilateral leg extensions in men. Journal of Musculoskeletal & Neuronal Interactions, 20(3), 325–331.
Anders, J. P. V., Keller, J. L., Smith, C. M., Hill, E. C., Neltner, T. J., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2020b). Performance fatigability and neuromuscular responses for bilateral versus unilateral leg extensions in women. Journal of Electromyography and Kinesiology, 50, 102367. https://doi.org/10.1016/j.jelekin.2019.102367
Anders, J. P. V., Smith, C. M., Keller, J. L., Hill, E. C., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2019). Inter- and Intra-Individual Differences in EMG and MMG during Maximal, Bilateral, Dynamic Leg Extensions. Sports, 7(7), 175. https://doi.org/10.3390/sports7070175
Andrews, S. K., Horodyski, J. M., MacLeod, D. A., Whitten, J., & Behm, D. G. (2016). The Interaction of Fatigue and Potentiation Following an Acute Bout of Unilateral Squats. Journal of Sports Science & Medicine, 15(4), 625–632.
Ansdell, P., Brownstein, C. G., Škarabot, J., Hicks, K. M., Howatson, G., Thomas, K., Hunter, S. K., & Goodall, S. (2019). Sex differences in fatigability and recovery relative to the intensity–duration relationship. The Journal of Physiology, 597(23), 5577–5595. https://doi.org/10.1113/JP278699
Babault, N., Desbrosses, K., Fabre, M.-S., Michaut, A., & Pousson, M. (2006). Neuromuscular fatigue development during maximal concentric and isometric knee extensions. Journal of Applied Physiology, 100(3), 780–785. https://doi.org/10.1152/japplphysiol.00737.2005
Brownstein, C. G., Millet, G. Y., & Thomas, K. (2020). Neuromuscular responses to fatiguing locomotor exercise. Acta Physiologica. https://doi.org/10.1111/apha.13533
Byrne, C., Eston, R. G., & Edwards, R. H. T. (2001). Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scandinavian Journal of Medicine & Science in Sports, 11(3), 134–140. https://doi.org/10.1046/j.1524-4725.2001.110302.x
Camic, C. L. (2011). An assessment of the motor control strategies and effects of fatigue specific to isometric, concentric, and eccentric muscle actions [Ph.D., The University of Nebraska - Lincoln]. https://search.proquest.com/docview/862368443/abstract/680283F6236340FCPQ/1
Cicchetti, D., & Sparrow, S. A. (1981). Developing Criteria for Establishing Interrater Reliability of Specific Items: Applications to Assessment of Adaptive Behavior. American Journal of Mental Deficiency, 86, 127–137.
Di Lazzaro, V., Oliviero, A., Profice, P., Insola, A., Mazzone, P., Tonali, P., & Rothwell, J. C. (1999). Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 124(4), 520–524. https://doi.org/10.1007/s002210050648
Enoka, R. M., & Duchateau, J. (2016). Translating Fatigue to Human Performance. Medicine and Science in Sports and Exercise, 48(11), 2228–2238. https://doi.org/10.1249/MSS.0000000000000929
Farthing, J. P., Chilibeck, P. D., & Binsted, G. (2005). Cross-Education of Arm Muscular Strength Is Unidirectional in Right-Handed Individuals. Medicine & Science in Sports & Exercise, 37(9), 1594–1600. https://doi.org/10.1249/01.mss.0000177588.74448.75
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
Gandevia, S. C. (2001). Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725
Hess, C. W., Mills, K. R., & Murray, N. M. F. (1986). Magnetic stimulation of the human brain: Facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neuroscience Letters, 71(2), 235–240. https://doi.org/10.1016/0304-3940(86)90565-3
Hill, E., Housh, T., Smith, C., Schmidt, R., & Johnson, G. (2016). Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions. Sports (Basel, Switzerland), 4(4). https://doi.org/10.3390/sports4040047
Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., & Hallett, M. (2011). Interhemispheric Plasticity in Humans. Medicine and Science in Sports and Exercise, 43(7), 1188–1199. https://doi.org/10.1249/MSS.0b013e31820a94b8
Houston, M. E., Froese, E. A., Valeriote, St. P., Green, H. J., & Ranney, D. A. (1983). Muscle performance, morphology and metabolic capacity during strength training and detraining: A one leg model. European Journal of Applied Physiology and Occupational Physiology, 51(1), 25–35. https://doi.org/10.1007/BF00952534
Hureau, T. J., Romer, L. M., & Amann, M. (2018). The “sensory tolerance limit”: A hypothetical construct determining exercise performance? European Journal of Sport Science, 18(1), 13–24. https://doi.org/10.1080/17461391.2016.1252428
Jenkins, N. D. M., Buckner, S. L., Bergstrom, H. C., Cochrane, K. C., Goldsmith, J. A., Housh, T. J., Johnson, G. O., Schmidt, R. J., & Cramer, J. T. (2014). Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Experimental Gerontology, 58, 47–50. https://doi.org/10.1016/j.exger.2014.07.007
Kawamoto, J.-E., Aboodarda, S. J., & Behm, D. G. (2014). Effect of Differing Intensities of Fatiguing Dynamic Contractions on Contralateral Homologous Muscle Performance. Journal of Sports Science & Medicine, 13(4), 836–845.
Keller, J. L., Housh, T. J., Hill, E. C., Smith, C. M., Schmidt, R. J., & Johnson, G. O. (2020). Are There Sex-Specific Neuromuscular or Force Responses to Fatiguing Isometric Muscle Actions Anchored to a High Perceptual Intensity? The Journal of Strength & Conditioning Research, Publish Ahead of Print. https://doi.org/10.1519/JSC.0000000000003394
Kluger, B. M., Krupp, L. B., & Enoka, R. M. (2013). Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology, 80(4), 409–416. https://doi.org/10.1212/WNL.0b013e31827f07be
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012
Marrelli, K., Cheng, A. J., Brophy, J. D., & Power, G. A. (2018). Perceived Versus Performance Fatigability in Patients With Rheumatoid Arthritis. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01395
Martin, P. G., & Rattey, J. (2007). Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflügers Archiv - European Journal of Physiology, 454(6), 957–969. https://doi.org/10.1007/s00424-007-0243-1
Matkowski, B., Place, N., Martin, A., & Lepers, R. (2011). Neuromuscular fatigue differs following unilateral vs bilateral sustained submaximal contractions. Scandinavian Journal of Medicine & Science in Sports, 21(2), 268–276. https://doi.org/10.1111/j.1600-0838.2009.01040.x
Muellbacher, W., Facchini, S., Boroojerdi, B., & Hallett, M. (2000). Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clinical Neurophysiology, 111(2), 344–349. https://doi.org/10.1016/S1388-2457(99)00243-6
Neyroud, D., Kayser, B., & Place, N. (2016). Are There Critical Fatigue Thresholds? Aggregated vs. Individual Data. Frontiers in Physiology, 7(376). https://doi.org/10.3389/fphys.2016.00376
Phillips, C. G., & Porter, R. (1964). The Pyramidal Projection to Motoneurones of Some Muscle Groups of the Baboon’s Forelimb. In J. C. Eccles & J. P. Schadé (Eds.), Progress in Brain Research (Vol. 12, pp. 222–245). Elsevier. https://doi.org/10.1016/S0079-6123(08)60625-1
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2011). Neuroscience (3rd Edition). Sinauer Associates is an imprint of Oxford University Press.
Rassier, D. E., & MacIntosh, B. R. (2000). Coexistence of potentiation and fatigue in skeletal muscle. Brazilian Journal of Medical and Biological Research, 33(5), 499–508. https://doi.org/10.1590/S0100-879X2000000500003
Rattey, J., Martin, P. G., Kay, D., Cannon, J., & Marino, F. E. (2006). Contralateral muscle fatigue in human quadriceps muscle: Evidence for a centrally mediated fatigue response and cross-over effect. Pflügers Archiv - European Journal of Physiology, 452(2), 199–207. https://doi.org/10.1007/s00424-005-0027-4
Regueme, S. C., Barthèlemy, J., & Nicol, C. (2007). Exhaustive stretch-shortening cycle exercise: No contralateral effects on muscle activity in maximal motor performances. Scandinavian Journal of Medicine & Science in Sports, 17(5), 547–555. https://doi.org/10.1111/j.1600-0838.2006.00614.x
Riebe, D., Ehrman, J., Liguori, G., & Magal, M. (2018). ACSM’s Guidelines for Exercise Testing and Prescription (10th ed.). Wolters Kluwer.
Rossman, M., Garten, R., Venturelli, M., Amann, M., & Richardson, R. (2014). The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(12), R934-940. https://doi.org/10.1152/ajpregu.00043.2014
Rossman, M., Venturelli, M., McDaniel, J., Amann, M., & Richardson, R. (2012). Muscle mass and peripheral fatigue: A potential role for afferent feedback? Acta Physiologica (Oxford, England), 206(4), 242–250. https://doi.org/10.1111/j.1748-1716.2012.02471.x
Ruschel, C., Haupenthal, A., Jacomel, G. F., Fontana, H. de B., Santos, D. P. dos, Scoz, R. D., & Roesler, H. (2015). Validity and Reliability of an Instrumented Leg-Extension Machine for Measuring Isometric Muscle Strength of the Knee Extensors. Journal of Sport Rehabilitation, 24(2). https://doi.org/10.1123/jsr.2013-0122
Sleivert, G. G., & Wenger, H. A. (1994). Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Archives of Physical Medicine and Rehabilitation, 75(12), 1315–1321. https://doi.org/10.1016/0003-9993(94)90279-8
Stedman, A., Davey, N. J., & Ellaway, P. H. (1998). Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle & Nerve, 21(8), 1033–1039. https://doi.org/10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9
Strang, A. J., Berg, W. P., & Hieronymus, M. (2009). Fatigue-induced early onset of anticipatory postural adjustments in non-fatigued muscles: Support for a centrally mediated adaptation. Experimental Brain Research, 197(3), 245–254. https://doi.org/10.1007/s00221-009-1908-0
Takahashi, K., Maruyama, A., Hirakoba, K., Maeda, M., Etoh, S., Kawahira, K., & Rothwell, J. C. (2011). Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain Stimulation, 4(2), 90–96. https://doi.org/10.1016/j.brs.2010.07.001
Thomas, K., Goodall, S., & Howatson, G. (2018). Performance Fatigability Is Not Regulated to A Peripheral Critical Threshold. Exercise and Sport Sciences Reviews, 46(4), 240–246. https://doi.org/10.1249/JES.0000000000000162
Thompson, B. J., Conchola, E. C., & Stock, M. S. (2015). Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors. Age, 37(6). https://doi.org/10.1007/s11357-015-9845-2
Tillin, N. A., & Bishop, D. (2009). Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent Explosive Activities. Sports Medicine, 39(2), 147–166. https://doi.org/10.2165/00007256-200939020-00004
Todd, G., Petersen, N. T., Taylor, J. L., & Gandevia, S. C. (2003). The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Experimental Brain Research, 150(3), 308–313. https://doi.org/10.1007/s00221-003-1379-7
Weavil, J. C., & Amann, M. (2019). Neuromuscular fatigue during whole body exercise. Current Opinion in Physiology, 10, 128–136. https://doi.org/10.1016/j.cophys.2019.05.008
Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research. https://doi.org/10.1519/15184.1
Zijdewind, I., & Kernell, D. (2001). Bilateral interactions during contractions of intrinsic hand muscles. Journal of Neurophysiology, 85(5), 1907–1913. https://doi.org/10.1152/jn.2001.85.5.1907
DOI: https://doi.org/10.7575/aiac.ijkss.v.8n.4p.25
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
2013-2024 (CC-BY) Australian International Academic Centre PTY.LTD.
International Journal of Kinesiology and Sports Science
You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.