Effects of Kettlebell Swing vs. Explosive Deadlift Training on Strength and Power

Matthew R. Maulit, David C. Archer, Whitney D. Leyva, Cameron N. Munger, Megan A. Wong, Lee E. Brown, Jared W. Coburn, Andrew J. Galpin

Abstract


Background: Recent research has compared explosive deadlift to kettlebell training observing their effects on strength. The kettlebell swing is a popular practical exercise as it shares share a hip hinge movement with the explosive deadlift, but the two have not been compared. Objectives: The purpose of this study was to compare the effects of kettlebell swing vs. explosive deadlift training on strength and power. Methods: Thirty-one recreationally resistance-trained men (age = 23.1 ± 2.3 years, height = 175.5 ± 6.6 cm, mass = 83.9 ± 13.8 kg, 1RM deadlift = 159.9 ± 31.7 kg) were randomly assigned to one of two groups [kettlebell swing group (KBG) n = 15, or explosive deadlift group (EDLG) n = 16]. Vertical jump height, isometric mid-thigh pull (MTP), and 1RM deadlift were measured pre and post training. Both groups trained twice per week for 4 weeks. Volume and load were increased after the first 2 weeks of training. Results: A 2 (time) x 2 (group) mixed factor ANOVA revealed a significant (P<0.05) increase in deadlift 1RM (pre: 159.9 ± 31.7 kg, post: 168.9 ± 31.8 kg) and vertical jump height (pre: 56.6 ± 9.9 cm, post: 57.9 ± 9.7 cm) for both groups, but were not significantly different between groups. There were no significant changes in MTP. Conclusions: Strength and conditioning professionals may use both kettlebell swings and explosive deadlifts to increase deadlift strength and vertical jump power.


Keywords


vertical jump, isometric mid-thigh pull, hip hinge

Full Text:

PDF

References


Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of applied physiology, 93(4), 1318-1326.

Adams, K., O'Shea, J. P., O'Shea, K. L., & Climstein, M. (1992). The Effect of Six Weeks of Squat, Plyometric and Squat-Plyometric Training on Power Production. The Journal of Strength & Conditioning Research, 6(1), 36-41.

Archer, D. C., Brown, L. E., Coburn, J. W., Galpin, A. J., Drouet, P. C., Leyva, W. D., et al. (2016). Effects of Short-Term Jump Squat Training With and Without Chains on Strength and Power in Recreational Lifters. International Journal of Kinesiology and Sports Science, 4(4), 18-24.

Beckham, G., Mizuguchi, S., Carter, C., Sato, K., Ramsey, M., Lamont, H., et al. (2013). Relationships of isometric mid-thigh pull variables to weightlifting performance. Journal of Sports Med and Physical Fitness, 53(5), 573-581.

Blatnik, J. A., Goodman, C. L., Capps, C. R., Awelewa, O. O., Triplett, T. N., Erickson, T. M., et al. (2014). Effect of Load on Peak Power of the Bar, Body and System during the Deadlift. Journal of Sports Science and Medicine, 13(3), 511-515.

Garhammer, J. (1979). Periodization of strength training for athletes. Track Tech, 73, 2398-2399.

Hill, A. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London B: Biological Sciences, 126(843), 136-195.

Jay, K., Frisch, D., Hansen, K., Zebis, M. K., Andersen, C. H., Mortensen, O. S., et al. (2011). Kettlebell training for musculoskeletal and cardiovascular health: a randomized controlled trial. Scandinavian journal of work, environment & health, 196-203.

Jay, K., Jakobsen, M. D., Sundstrup, E., Skotte, J. H., Jørgensen, M. B., Andersen, C. H., et al. (2013). Effects of kettlebell training on postural coordination and jump performance: a randomized controlled trial. The Journal of Strength & Conditioning Research, 27(5), 1202-1209.

Kaneko, M., Fuchimoto, T., Toji, H., & Suei, K. (1983). Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scandinavian Journal of Sports Science, 5(2), 50-55.

Lake, J. P., & Lauder, M. A. (2012). Kettlebell swing training improves maximal and explosive strength. The Journal of Strength & Conditioning Research, 26(8), 2228-2233.

Manocchia, P., Spierer, D. K., Lufkin, A. K., Minichiello, J., & Castro, J. (2013). Transference of kettlebell training to strength, power, and endurance. The Journal of Strength & Conditioning Research, 27(2), 477-484.

McBride, J. M., Triplett-McBride, T., Davie, A., & Newton, R. U. (2002). The effect of heavy-vs. light-load jump squats on the development of strength, power, and speed. The Journal of Strength & Conditioning Research, 16(1), 75-82.

McGill, S. M., & Marshall, L. W. (2012). Kettlebell swing, snatch, and bottoms-up carry: back and hip muscle activation, motion, and low back loads. The Journal of Strength & Conditioning Research, 26(1), 16-27.

Otto, W. H., Coburn, J. W., Brown, L. E., & Spiering, B. A. (2012). Effects of weightlifting vs. kettlebell training on vertical jump, strength, and body composition. The Journal of Strength & Conditioning Research, 26(5), 1199-1202.

Selye, H. (1956). The Stress of Life. New York, NY: McGraw-Hill

Swinton, P. A., Stewart, A. D., Keogh, J. W., Agouris, I., & Lloyd, R. (2011). Kinematic and kinetic analysis of maximal velocity deadlifts performed with and without the inclusion of chain resistance. The Journal of Strength & Conditioning Research, 25(11), 3163-3174.

Tillin, N. A., Pain, M. T., & Folland, J. P. (2012). Short‐term training for explosive strength causes neural and mechanical adaptations. Experimental physiology, 97(5), 630-641.

Wilson, G. J., Newton, R. U., Murphy, A. J., & Humphries, B. J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine and science in sports and exercise, 25(11), 1279-1286.




DOI: https://doi.org/10.7575//aiac.ijkss.v.5n.1p.1

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2024 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.