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ABSTRACT

Purpose: Predicting performance in sports competitions is a popular topic in research. 
However, only a few studies exist in rowing sports, which suggest that some anthropometric 
and performance indices might predict performance in various situations. Methods: This work 
expands past research by examining the effects of five anthropometric measures, such as body 
mass index (BMI), height, weight, fat, and muscle, and three performance indicators, such as 
aerobic capacity, maximum speed, and force, while also considering the training history of 38 
elite rowers (Mage = 16.89 ± 1.85, range 14.7 to 22.6 years, 61% males) participating in a national 
championship. Results: Apart from BMI, all measures correlated statistically significantly with 
the 2000m rowing time. A bootstrapped forward multiple regression yielded the best model with 
only two predictors (R2 =.995), aerobic capacity and body mass, accounting for 99.5% variance 
in the 2000m rowing time. Conclusions: While the results support previous findings, such robust 
prediction has not been reported in the literature. We conjecture that the differences from other 
past works rest with the high-pressure 2000m performance preceding a national championship. 
If these findings could be replicated, their practical implication is substantial in preparatory 
training for rowing contests.
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INTRODUCTION

Rowing is a cyclic type of strength-endurance sport that re-
quires the body’s ability to sustain effort for a longer period. 
(Baudouin & Hawkins, 2004; Shaharudin & Agrawal, 2016). 
Rowing was already well-known as a means of transport in 
ancient times, while modern rowing sport developed in the 
18th century. From there on, many rowing regattas have been 
established, and the sport’s popularity has increased steadi-
ly. Nolte (2023) recently described the scientific aspects of 
rowing, highlighting the unique nature of this sport. Indeed, 
technical and equipment differences distinguish rowing from 
other paddling sports. For example, athletes sit in the oppo-
site direction of forward movement on a rolling seat, while 
the oars are connected to the boat with spurs (oarlocks). The 
two main rowing disciplines are sculling (one oar in each 
hand of the rower) and sweeping (one athlete uses one oar), 
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and there are different techniques to propel the boat effec-
tively (e.g., Adam, DDR, Grinko, and Rosenberg style).

Rowing races take place in various boat classes, depend-
ing on the number, gender, and weight of the rowers. The 
presence or absence of a coxswain further increases the op-
tions for classification. Rowing competitions are organized 
at diverse levels: school, regional, national, continental, and 
international races. World Rowing Championships are held 
separately for the age categories (elite rowers, juniors, mas-
ters, U23), and World Rowing Cups are also critical chal-
lenges for elite rowers.

Research on predicting 2000m rowing performance pro-
liferates continuously to select the best athletes and predict 
the best performance. However, it is difficult to measure and 
compare the 2000m rowing performance on water due to ex-
ternal factors (wind, water flows, temperature, etc.), while 
simulating official competitions can be an effective way to 
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evaluate athletes’ performance (Alföldi et al., 2023). There-
fore, over the years, more often, the 2000m indoor ergometer 
time is the standard used for developing prediction models 
allowing for a controlled environment and mimicking the 
movement on water (Akça, 2014; Brett & Hopkins, 2012; 
De Campos Mello et al., 2009; Giroux et al., 2017). How-
ever, despite this practice, the most reliable way to evalu-
ate an athlete’s rowing performance is to measure the time 
required to complete a given rowing distance (2000m) on 
water (Mäestu et al., 2005).

Extant performance prediction models involve psycho-
physiological characteristics like body mass index (BMI), 
height, weight, body fat, and muscle mass, along with per-
formance indicators like aerobic capacity (VO2 max), max-
imum speed, and force. These measures are assumed to be 
predictors of rowing performance to a lesser or greater ex-
tent (Akça, 2014; Silva et al., 2021). However, most studies 
failed to homogenize the level at which the studied rowers 
compete (skill level), which is essential for the reliability and 
replicability of the results.

Examining the anthropometry of athletes often highlights 
the physiological, functional, and biomechanical aptitudes 
required to excel in sports (Battista et al., 2007). In rowing, 
Russell et al. (1998) demonstrated that reliable performance 
prediction models could be based solely on anthropometric 
indices. Research on rowers’ anthropometric characteristics 
underscores the significance of body mass (Maciejewski, 
2019; Winkert et al., 2019), particularly lean body mass 
(Cosgrove et al., 1999) and body height (Bourgois, 2000; 
Penichet-Tomas et al., 2021). A lower BMI is associated 
with improved performance (Castañeda-Babarro, 2024). 
Muscle mass is a primary factor behind gender differences 
and maximal strength (Janssen et al., 2000; Mayhew et al., 
2001; Miyashita & Kanehisa, 1979; Stefani, 2006). Final-
ly, body fat percentage is also an essential predictor in per-
formance models (Majumdar et al., 2017). These findings 
confirm that anthropometric measures play a pivotal role in 
rowing performance.

Although the predictive potential of anthropometric 
characteristics is significant, more effective models can be 
developed by combining them with selected physiologi-
cal characteristics. During a rowing race, aerobic capacity 
contributes 75-80% of the required energy, making an ex-
ceptionally high aerobic capacity essential for successful 
rowing performance (Droghetti et al., 1991; Jurišić et al., 
2014; Silva et al., 2021). Consequently, researchers often 
assess changes in maximal oxygen uptake (VO2 max) and 
incorporate this index into the design of effective prediction 
models (Castañeda-Babarro, 2024; Cosgrove et al., 1999; 
Ingham, 2002; Lacour et al., 2009; Riechman et al., 2010). 
Fitness indices, including peak and mean power, maximum 
speed, maximum force, and other strength variables, have 
been shown to effectively predict 2000m rowing ergome-
ter performance (Bourdin et al., 2004; Izquierdo-Gabarren 
et al., 2010; Riechman et al., 2010). While the relationship 
between rowers’ force output and performance may be sig-
nificant, the exact nature of this interaction remains unclear 
(Ingham, 2002; Warmenhoven et al., 2018).

As discussed above, studies indicate that models consider-
ing different anthropometric and physiological characteristics 
have greater predictive potential than using these measures 
individually. Based on the results obtained during past works, 
the question arises as to which characteristics or combinations 
are more robust predictors of 2000m rowing performance that 
could be applied in practice. Are the anthropometric charac-
teristics or the aerobic capacity more effective measures of 
performance? Does training history have a significant effect 
on 2000m rowing performance? Which measures should be 
involved in a performance prediction model?

To address gaps in the extant literature, particularly the 
limited predictive power of individual anthropometric or 
physiological factors, we aimed to examine a more compre-
hensive model of 2000 m rowing performance by examining 
a wider range of variables. Specifically, we investigate key 
anthropometric (BMI, height, weight, body fat, and muscle 
percentage) and physiological (aerobic capacity [VO₂ max], 
maximum speed, and force) characteristics, while also con-
sidering training history. Our study is distinct in focusing 
on a homogeneous sample of elite rowers who competed in 
the Hungarian National Rowing Championship during their 
pre-competition training phase, thus reducing variability 
and increasing the reliability of findings. We hypothesized 
combining several anthropometric and performance-related 
indices would predict 2000 m performance more accurately 
than any single factor alone. This approach may contribute 
to more effective athlete selection and individualized train-
ing strategies.

METHODOLOGY

Participants and Study Design

With permission from club management and coaches, partic-
ipants were recruited from the cohort of young athletes com-
peting in the Hungarian National Rowing Championships. 
The three inclusion criteria were being a registered rower 
competing in the national championship, having medical 
clearance for competitive sports, and having a regular train-
ing record for at least three months (a national-level row-
er in Hungary trains at least five days per week). Exclusion 
criteria included acute or chronic injury, illness, or medical 
condition that could interfere with physical performance or 
testing.

A priori power analysis using the G*Power (v. 3.1) soft-
ware (Faul et al., 2009) for multiple linear regression with 
10 predictors, an alpha level of 0.05, and power of 0.80 to 
detect a medium effect size (f² = 0.15), indicated a required 
sample size of 118 participants. Due to the limited number of 
eligible elite rowing athletes, our final sample was only one-
third of the calculated sample size. Therefore, we decided 
to compensate for the reduced statistical power by apply-
ing bootstrapping procedures (1,000 resamples) to estimate 
confidence intervals and enhance the robustness and gen-
eralizability of the regression coefficients. This resampling 
approach helps to mitigate potential bias from small sample 
sizes and strengthens the stability of the predictive models 
(Mooney et al., 1993).
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All the participants were healthy elite rowers with med-
ical clearance for sports competitions. They (and their par-
ents if they were minors) provided informed consent and 
completed a General Data Protection Regulation (GDPR) 
data handling form before participating in the study. In total, 
42 elite rowers agreed to participate, but only 38, including 
23 men (Mage = 16.2 years; SD = 1.4; range = 14.7–22.6), 
completed the study (Table 1). The four dropouts found 
testing distracting in their preparation for the competition. 
The study, conducted over four days, was approved by the 
Research Ethics Board (Permission No. SZE/ETT-11/2024 
[IX.11.]). Participants (and their parents in case of minors) 
were informed about the study’s objectives and the poten-
tial risks, measurement methods, and motor test techniques. 
The research followed the Helsinki Declaration’s principles 
(World Medical Association, 2013) for human participant 
studies.

The research employed a cross-sectional (correlational) 
design with laboratory-based assessments to examine how 
anthropometric and physiological variables predict 2000 m 
rowing performance in elite athletes.

Materials

Anthropometric and body composition measures

A trained ISAK-accredited expert (level 1) measured an-
thropometric characteristics according to the standardized 
procedures of the International Society of Kinanthropome-
try. Demographic questions included age, training age, and 
training experience. Body height (BH) was measured to the 
nearest 0.1 cm using a height rod scale (Seca 217, Hamburg, 
Germany) without shoes. Body mass (BM) was measured to 
the nearest 0.1 kg after removing shoes and heavy clothing. 
Body mass index (BMI) was calculated by dividing body 
weight in kilograms by the square of body height in meters 
[body mass (kg)/BHm2]. Body composition characteristics 
(fat mass percentage, FMP [%], and muscle mass percent-

age, MMP [%]) were measured in the standing position us-
ing the InBody 720 tetrapolar 8-point tactile electrode sys-
tem (Biospace Co., Ltd., Seoul, Korea) (Gibson et al., 2008).

2000-meter maximal rowing ergometer test

Competitors completed a 2000 m total effort test on a cer-
tified rowing ergometer (Concept 2 D, RowErg200, USA). 
The ergometer screen was set to display the number of 
meters remaining, the average 500 m time, and the overall 
time. Power in watts (W) was measured over 2000 m. The 
watts were calculated as follows: first, the distance was de-
termined: distance = (time/number of strokes) × 500. The 
“split” was calculated in the next step: split = 500 × (time/
distance). The watts were calculated as 2.8/(split/500). There 
were minor differences in intensity due to individual varia-
tions in stroke rate and the ability to hold the 500m split time 
constant. Before testing, participants warmed up for 6 min 
on a 500m run, rested for 6 min, and performed stretching 
exercises during this time. Estimated relative aerobic capac-
ity (ErVO2) was calculated using the formula ErVO2 = (Y 
× 1000)/BM for women (McArdle et al, 2007), where BM 
is body mass and Y = [BM <61.36 kg; 14.6.1-(1.5 × time)]; 
BM => 61.3 kg; 14.6 - (1. 5 × time)]; for men, ErVO2 = (Y 
× 1000)/BM, where BM is body mass and Y = [BM <75 kg; 
15.1- (1.5 × time)]; [BM => 75 kg; 15.7- (1.5 × time)].

Counter-movement jump

We assessed lower limb explosiveness with the PJS-4P60S 
force plateau (“JBA” Zb. Staniak, Poland) with a sampling 
frequency of 400 Hz (Gajewski et al., 2008). In the calcula-
tions, the rower’s body mass was taken as a point influenced 
by the vertical component of the gravitational force acting 
on the body and the reactive force of the platform. Three 
counter-motion jumps (CMJ) were performed, with each 
maximum force assessed. To perform a CMJ, participants 
performed a vertical jump from a standing, upright position, 
preceded by a countermovement of the upper limbs and a 
lowering of the center of mass prior to take-off. This study 
aimed to determine the maximum force (Forcemax [N]) and 
the maximum speed (Speedmax [m/s]).

Procedure

We conducted anthropometric and physiological tests in a 
temperature and humidity-controlled laboratory at the begin-
ning of the competition season. On day one, anthropometric 
and body composition measurements were performed. The 
participants were asked to arrive on an empty stomach at the 
testing facility. On the second day, they completed the mo-
tor skills test (Countermovement Jump [CMJ]) in the morn-
ing, and in the afternoon, they performed the 2000m rowing 
ergometer test. The coaches were instructed not to perform 
strenuous training with the athletes participating in the re-
search on the day before the study. The study was conducted 
during the preparation week for the national championship.

Table 1. Anthropometric and physiological measures, and 
2000m rowing results of 38 participants

Mean SD Min Max
Age (years) 16.91 1.91 14.69 22.57
Training history 
(years)

4.85 2.39 0.41 9.92

Height (cm) 175.91 9.43 158.70 194.00
Weight (kg) 68.46 7.95 53.60 87.20
Body fat percent (%) 18.69 8.30 8.10 40.80
Body muscle percent 
(%)

38.77 5.80 26.00 46.40

Body Mass Index 
(BMI) 

22.17 2.32 17.80 28.00

Time 2000m (min) 7.57 0.67 6.08 9.30
Aerobic capacity 
(VO2 max)

63.13 11.41 30.59 81.39

Maximum speed (m/s) 2.46 0.31 1.93 3.33
Maximum force (N) 1,521.95 262.78 950.00 2,036.00
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Data Availability

The data set on which this report is based is available from 
the authors in Excel or SPSS format upon reasonable request.

Statistical Analyses

First, we examined data normality by calculating skewness 
and kurtosis. Second, we calculated the correlations between 
the predictor variables and the dependent measure (2000 m 
rowing performance). Finally, we conducted a bootstrapped 
hierarchical multiple regression analysis to identify signifi-
cant 2000 m rowing performance predictors.

Results

First, we examined the normality of the data by calculat-
ing the skewness and kurtosis of the measures. All skew-
ness values obtained were between -1.00 and +1.00, and the 
kurtosis values were between -2.00 and +2.00. According to 
Hair et al. (2010) and Byrne (2010), the data are normally 
distributed if the skewness is between -2.00 and +2.00 and 
the kurtosis is between -7.00 and +7.00. Next, we calculated 
Pearson’s product-moment correlation coefficients (r) be-
tween the dependent measure (2000m performance) and the 
independent variables (Table 2).

Subsequently, we employed bootstrapping with 5,000 re-
samples to calculate confidence intervals for the regression 
coefficients and improve the estimates’ robustness, given the 
modest sample size, in a forward hierarchical multiple re-
gression predicting 2000m rowing performance. We used all 
measures from Table 1 as predictors except the BMI, which 
did not correlate statistically significantly with the 2000m 
performance. The final model, with two significant predic-
tors— aerobic capacity (β = -0.047, p <.001) and body mass 
(β = -.044, p <.001)—explained 99.5% of the variance in 
2000m rowing performance before the national champion-
ship (adjusted R2=.995; adjusted R2=.995, see Table 3 A-D). 

The bootstrap bias was minimal (<.001), and the unstandard-
ized β coefficients were stable across the 5,000 bootstrap 
replicates. All assumptions (for calculating regressions) 
were met, including linearity, independence, homoscedastic-
ity, and normality of residuals.

The final model’s RMSE (0.045) indicated extremely 
low error. The unstandardized coefficients were highly stable 
across 5,000 bootstrap samples, and the bias was negligible 
(< .001). The confidence intervals emerged to be narrow and 
consistent. The residuals did not show autocorrelation based 
on the Durbin-Watson statistic (1.435). Homoscedasticity, 
linearity, and normality of residuals were confirmed. The 
correlation between the two statistically significant predic-
tors was r =.187, and the variance-inflated factor was 1.04. 
These results suggest no concern over multicollinearity be-
tween VO₂ max and body mass. Therefore, collinearity did 
not artificially inflate the high adjusted R² (.995). Conse-
quently, the model is statistically well-justified.

DISCUSSION
The results of this study indicate that aerobic capacity (VO₂ 
Max) and body mass are the most critical parameters in pre-
dicting 2000m ergometer rowing performance in young elite 
rowers. In the current sample, these two variables together 
accounted for an exceptionally high 99.5% of the variance 
in performance time, as indicated by the final multiple re-
gression model (adjusted R² = 0.995). This suggests that they 
function as near-complete predictors of ergometer rowing 
time under the specific testing conditions employed.

This finding reinforces past empirical works by substanti-
ating the importance of aerobic power and body composition 
in rowing performance. However, it is important to highlight 
that past research has not typically reported such a strong pre-
dictive power. The unusually high level of explained variance 
in the current study may reflect unique features of the sample 
and testing protocol. Specifically, the data were collected in 
the immediate period leading up to a national championship, 
when athletes are likely to be near peak physiological and 
psychological readiness. This competition-specific context 
may have minimized performance variability due to extrane-
ous factors and thus strengthened the predictive relationship 
between physiological capacity and rowing time.

Moreover, the low variance inflation factors (VIF ≈ 1.04) 
confirm that multicollinearity between VO₂ Max and body 
mass was negligible, supporting the statistical integrity of 
the regression model. The residuals met all standard assump-
tions for linear regression, and bootstrap resampling (5,000 
iterations) revealed highly stable coefficient estimates with 
negligible bias, further enhancing the model’s robustness in 
the sample studied.

It is also worth noting that other commonly studied 
predictors, such as muscle percentage, maximum strength, 
and training history, although significantly correlated with 
2000m performance, did not contribute meaningfully to the 
final predictive model once VO₂ Max and body mass were 
accounted for. This underlines the dominant predictive role 
of aerobic fitness and overall body mass when peak compet-
itive performance is the outcome of interest.

Table 2. Pearson’s correlation between dependent and 
independent variables (n=38)

2000m 
Time (min)

p R-squared 
(R2)

Training history 
(years)

r -0.489** 0.002 0.239

Height (cm) r -0.635** <.001 0.403
Weight (kg) r -0.652** <.001 0.425
Body fat percent (%) r 0.618** <.001 0.382
Body muscle percent 
(%)

r -0.721** <.001 0.520

Body Mass Index 
(BMI)

r -0.031 0.854 0.001

Aerobic capacity 
(VO2 Max)

r -0.862** <.001 0.743

Maximum speed r -0.508** 0.001 0.258
Maximum force r -0.754** <.001 0.569
**. Correlation is significant at the 0.01 level (2-tailed).
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Table 3. A-D
A) Bootstrapped multiple linear regression

Model R R² Adjusted 
R²

RMSE R² 
Change

F 
Change

df1 df2 p Durbin‑Watson
Autocorrelation Statistic p

1 0.000 0.000 0.000 0.613 0.000 0 37  0.216 1.473 0.096
2 0.829 0.687 0.678 0.348 0.687 79.049 1 36 < .001 0.262 1.452 0.075
3 0.997 0.995 0.995 0.045 0.308 2128.873 1 35 < .001 0.191 1.435 0.060

B. ANOVA 
Model  Sum of Squares df Mean Square F p
2 Regression 9.547 1 9.547 79.049 < .001
 Residual 4.348 36 0.121  
 Total 13.895 37  
3 Regression 13.824 2 6.912 3440.172 < .001
 Residual 0.070 35 0.002  
 Total 13.895 37  
The intercept model is omitted, as no meaningful information can be shown.

C. Coefficients 
Model  Unstandardized Standard Error Standardized t p 95% CI

Lower Upper
1 (Intercept) 7.529 0.099 75.735 < .001 7.327 7.730
2 (Intercept) 10.712 0.362 29.555 < .001 9.977 11.447
 VO2 -0.050 0.006 -0.829 -8.891 < .001 -0.061 -0.038
3 (Intercept) 13.510 0.077 176.456 < .001 13.354 13.665
 VO2 0.047 7.248×10-4 -0.778 -64.404 < .001 -0.048 -0.045
 BM -0.044 9.437×10-4 -0.557 -46.140 < .001 -0.045 -0.042
BM=Body mass (weight); VO2=aerobic capacity. The following covariates were considered but not included: Training history, body height, 
body fat, maximum speed, and maximum force.

D. Bootstrap (5,000 samples) Coefficients 
Model  Unstandardized Bias Standard Error p* 95% CI*

Lower Upper
1 (Intercept) 7.527 -2.398×10-4 0.099 < .001 7.331 7.721
2 (Intercept) 10.710 0.016 0.297 < .001 10.221 11.403
 VO2 -0.050 -2.300×10-4 0.005 < .001 -0.062 -0.042
3 (Intercept) 13.504 -0.012 0.118 < .001 13.283 13.739
 VO2 -0.047 1.107×10-4 0.001 < .001 -0.049 -0.045
 BM -0.044 7.936×10-5 0.001 < .001 -0.046 -0.041
Bootstrapping based on 5000 replicates.
The coefficient estimate is based on the median of the bootstrap distribution.
* Bias-corrected accelerated.

Although these results are compelling, they should be in-
terpreted with caution. While typical for elite athlete studies, 
the relatively small sample (n = 38) may limit generalizabil-
ity. Additionally, because the measurements were taken in 
a high-performance training phase, the results may not be 
extrapolated to general training periods or rowers of differ-
ent skill levels.

Consistent with our findings, VO2 max and lean body 
mass were highly correlated with velocity in a 2000m row-

ing ergometer time trial (r = 0.85) in a study by Cosgrove 
et al. (1999) involving 13 young male rowers (aged 19.9 
± 0.6 years). Stepwise multiple regression identified VO2 
max as the single most significant predictor, accounting for 
72% of the variance in rowing performance. This value was 
exceeded in a study by Yoshiga and Higuchi (2003), who 
reported a r = -.90 correlation between the 2000m rowing 
sprint and VO2 max (reflecting 81% shared variance between 
the two measures). Finally, Gillies and Bell (2000) reported 
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an almost perfect correlation (r = -.96) between the 2000m 
rowing time and VO2 max. Our model’s predictive power 
of VO2 max was comparable but lower than in these studies 
(R2 =.68). However, adding body mass, the predictive power 
emerged as almost perfect, reflected in the 99.5% figure. The 
critical role of body mass is also supported by a more recent 
study (Cerasola et al., 2020) that found a stronger correla-
tion between body mass (r = -.815) and 2000m rowing sprint 
than VO2 max and 2000m rowing time (r = -.761) in national 
level young rowers.

Yoshiga and Higuchi (2003) have also substantiated the 
importance of body mass in the 2000m rowing sprint, in ad-
dition to the VO2 max. These authors found that body mass 
was a significant predictor (r = -.85) of the 2000m rowing 
time in 191 rowers. Indeed, these authors concluded, “This 
study suggests that individuals with large body size and aer-
obic capacity possess an advantage for a 2000-m row on an 
ergometer” (p. 317), matching the conclusion of our study. 
However, this paper did not disclose the athletes’ competi-
tion level despite mentioning that the participants trained at 
least 5 days a week.

The current study revealed a significant inverse relation-
ship between body mass and 2000m ergometer rowing time 
(r = -.652; refer to Table 2). Comparable results emerged 
from other studies as well (r= -0.506, [Majumdar & Mandal, 
2017]; r = -.680, [Nevill et al., 2010]; r = - 0.41, [Russell 
et al., 1998]). Together, these studies suggest that body mass 
has a moderate to strong relationship with the 2000m rowing 
ergometer performance. Therefore, besides VO2 max, an-
thropometric measures should be included in performance 
prediction models of the 2000m rowing ergometer sprint 
time. However, considering past conjectures (i.e., Russell et 
al., 1998), anthropometric indices alone are not the best pre-
dictors of the 2000m rowing sprint.

Although VO₂ max and body mass, when considered 
together, are significant predictors of 2000m rowing sprint 
performance, other anthropometric and physiological mea-
sures may also serve as effective or even superior predictors, 
depending on the specific context of rowing. For example, 
recent research (Castañeda-Babarro, 2024) evaluated row-
ers’ anthropometric and performance profiles based on their 
position in the boat. The study found that height, associat-
ed with longer arms and greater body mass, predicts per-
formance. However, a lower BMI was explicitly associated 
with improved performance in the bow and stern positions.

In a 6000m rowing sprint, anthropometric and metabolic 
variables jointly were found to be the strongest predictors 
of performance (R² =.722), followed by models that includ-
ed either anthropometric (R² =.575) or metabolic (R² =.530) 
measures alone (Mikulic, 2009). These differences imply 
that the 2000m ergometer performance predictors should not 
be extrapolated to other rowing situations, such as longer 
distances, co-acting or team rowing, and rowing on water. 
Consequently, the here-reported results are limited to the 
2000m ergometer rowing, the most often adopted laboratory 
trial investigating rowing performance and related measures.

In Summary, our results align with previous research in 
confirming that VO₂ max and body mass are strong predictors 

of 2000m rowing ergometer performance. Like earlier works 
by Cosgrove et al. (1999), Yoshiga and Higuchi (2003), and 
Gillies and Bell (2000), we found that VO₂ max shows a sub-
stantial inverse correlation with rowing time. Furthermore, 
consistent with studies by Cerasola et al. (2020) and Yoshiga 
and Higuchi (2003), our results support the significant con-
tribution of body mass to rowing performance.

What distinguishes our study from prior research is the 
combined predictive power of VO₂ max and body mass, 
which together explained 99.5% of the variance in 2000m 
performance—a level of predictive accuracy not previously 
reported. This suggests a near-total model of performance 
prediction when both physiological and anthropometric 
factors are considered. Additionally, the timing of our data 
collection—before a national championship—may have 
contributed to the powerful associations by capturing ath-
letes at peak readiness, a factor not consistently reported in 
earlier studies. Thus, while our findings corroborate the cen-
tral role of aerobic capacity and body mass highlighted in 
past research, they also add new knowledge by demonstrat-
ing their combined, near-complete predictive capacity under 
high-performance, competition-ready conditions.

Strengths and Practical Implications

A strength of the current study lies in its focus on a homoge-
neous sample of young elite rowers tested immediately be-
fore a national-level competition. This specific research con-
text might have reduced variability, boosting the observed 
relationships’ robustness. Furthermore, bootstrapped regres-
sion analysis further improved the reliability of statistical 
estimates despite the modest sample size. From a practical 
perspective, the findings offer valuable insights for coaches, 
sport scientists, and talent identification programs. Specifi-
cally, VO₂ max and body mass emerge as highly informative 
markers for assessing and monitoring rowing-specific per-
formance potential. Routine evaluation of these parameters 
may support individualized training plans, guide athlete se-
lection for competition, and help optimize resource alloca-
tion in athlete development programs.

Limitations

This study has a relatively small sample size, but the boot-
strapping method strengthens the reliability of the findings. 
Rowers competing in the national championship may not 
represent all rowing athletes. Finally, even using the boot-
strapping method, biological sex differences could not be 
examined in this study due to the small number of men and 
women in the sample.

CONCLUSIONS

This study found that aerobic capacity (VO₂ max) and body 
mass explained 99.5% of the variance in 2000m ergometer 
rowing performance among young elite athletes preparing 
for a national championship. While the predictive power is 
almost perfect, the findings are context-specific and may not 
generalize to other rowing populations or settings. Replica-
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tion with larger, more diverse samples is needed to confirm 
these results and to explore potential sex-based differences. 
If validated, these findings may inform performance assess-
ment and training strategies, emphasizing the integration of 
physiological and anthropometric measures, with VO₂ max 
and body mass emerging as the most reliable predictors of 
2000m rowing performance.
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