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ABSTRACT

Background: Recent innovations in surface electromyographic (sEMG) technology have 
enabled the measurement of muscle activity using smart textiles. Objective: In this study, 
the StriveTM Sense3 performance monitoring system is evaluated against a research-grade 
system, NoraxonTM, in measuring activity during the back squat exercise. Method: Seventeen 
participants performed three total trials of the squat exercise with a progressive load for 
individual trials equal to 30%, 60%, and 80% of their estimated maximum 1RM (one-repetition 
maximum). sEMG measurements from the rectus femoris were captured for the left and 
right leg by both systems. Pearson product-moment correlation coefficient (r) and intraclass 
correlation coefficient (ICC) values were computed for each trial to assess concurrent validity 
and interrater reliability of the StriveTM Sense3 device. Additionally, five coaches at the 
collegiate- and professional-level of Men’s Basketball speak from an autoethnographic frame 
to the findings from this study. Results: Results ranged from “Poor” to “Excellent” validity 
and “Poor to Moderate” to “Excellent” reliability, with a majority of trials achieving “Good” or 
better results across all loads [93% trials: r >= 0.7; 87% trials: lower ICC 95% CI bound >= 0.75 
(absolute sEMG); 98% trials: lower ICC 95% CI bound >= 0.75 (normalized sEMG)]. Higher 
validity and reliability for medium and heavy loads were observed in comparison to the light 
load, and several outliers indicate the need for coaches to lubricate sensors and ensure proper 
fit to collect accurate data. Conclusion: Examining results alongside practitioner feedback 
indicate the StriveTM Sense3 system is capable of tracking sEMG activity in comparison to a 
research-grade system.

Key words: Surface Electromyography, Wearable Electronic Devices, Reliability and Validity, 
Muscle Contraction, Correlation of Data

INTRODUCTION

The generalized aims of electromyography (EMG) are to 
analyze the function and coordination of muscles during 
different movements and activities, in different populations, 
under laboratory conditions as well as during activities of 
daily living (Clarys, 2000). Multiple systems exist for both 
surface and intramuscular EMG to assess muscle activation 
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(Massó et al., 2010), each with their own advantages and dis-
advantages. Intramuscular EMG is generally used in clinical 
settings and is considered more precise, but since a needle 
electrode is required, it is invasive and sometimes painful 
to the wearer (Massó et al., 2010). Surface EMG (sEMG) 
requires more skin preparation and accurate positioning 
to avoid muscle cross-talk but has the advantage of being 
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noninvasive and more appropriate for dynamic activities 
(Massó et al., 2010). Consequently, sEMG has become a 
popular solution for insights and evidence-based decisions 
in sport applications, such as detecting movement technique, 
abnormal muscle activation, evaluating injury risk, pre-
dicting performance as well as in recovery from injury and 
return to sport (Ball & Scurr, 2013; Clarys & Cabri, 1993; 
Lynn et al., 2018; Massó et al., 2010; Türker & Sözen, 2013; 
Vigotsky et al., 2018).

Research grade (RG) sEMG systems from companies 
such as Noraxon, Biopac, and Motion Lab Systems have 
become the gold-standard for measuring muscle activi-
ty (Desmarais & Giess, 2017; Lynn et al., 2018; Smith, 
2019). However, these systems are often limited to a lab-
oratory environment due to the additional hardware need-
ed to amplify and perform computations on the signals. 
Conversely, wireless, wearable sEMG devices can aid in 
conveniently capturing muscle activity in various popu-
lations and in various scenarios, especially outside of a 
laboratory. Implementation of wearable body sensor net-
works has paved the way for much smaller, more feasible, 
less complex, and affordable sEMG systems (Lynn et al., 
2018). Wireless sensors do have their limitations, such 
as sensor range, battery life, and continuous monitoring 
(Fong & Chan, 2010; Vigotsky et al., 2018). The advent of 
wearable technology and wearable EMG devices are suc-
cessfully bridging these limitation gaps, but still require 
appropriate validation and refinement. In the field, coach-
es and practitioners have expressed a general distrust of 
certain types of novel wearable technology due to a lack 
of transparency in the representation of the data as well 
as an inconsistency in recording of values (Luczak et al., 
2019). As such, further research and cross-validation of 
these novel wearable systems, especially in dynamic tasks, 
are warranted.

Novel types of wearable sEMG devices have been 
previously proposed (Jang et al., 2018; Lynn et al., 2018; 
Shafti et al., 2016; Smith, 2019) and some have been tested 
for validity and reliability during static isometric and dy-
namic activities against traditional RG systems (Desmarais 
& Giess, 2017; Finni et al., 2007; Lynn et al., 2018; Smith, 
2019). Among the novel wearable sEMG systems specif-
ic to lower extremity athletic activities are the MyontecTM 
system (Finni et al., 2007), the Athos® wearable EMG 
system (Lynn et al., 2018), and the Strive Sense3™ sys-
tem (Smith, 2019). These systems are incorporated into 
compression athletic shorts, predominantly analyzing 
lower extremity thigh muscles (Finni et al., 2007; Lynn 
et al., 2018; Smith, 2019). sEMG measurements collect-
ed from the quadriceps individually from the three vastii 
muscles and from the rectus femoris are commonly used 
to quantify performance in voluntary isometric contrac-
tions (Caterisano et al., 2002; Clarys & Cabri, 1993; Jang 
et al., 2018; Schwanbeck et al., 2009). Moreover, different 
types of squats such as the back squat, free weight squat, 
Smith machine squat, and wall sit squat have also been an-
alyzed using sEMG recordings from the quadriceps group 
of muscles (Ebben & Jensen, 2002; Nishiwaki et al., 2006; 

Schwanbeck et al., 2009; Slater & Hart, 2017; Yuen et al., 
2019). Additionally, sEMG was reported to be a reliable 
method for assessing reproducibility of muscle activation 
during controlled dynamic ballistic movements including 
jump landings and cutting (Fauth et al., 2010). Previous 
validity research in wearable sEMG shorts have measured 
muscle activity in the quadriceps during isometric and 
dynamic activities (Finni et al., 2007; Lynn et al., 2018; 
Smith, 2019).

Findings from studies of these systems as well as 
validation methodologies were mixed. Research on the 
MyontecTM system reported good agreement with tradition-
al electrodes during knee extension in a seated position and 
was also found to be feasible to measure in real-time during 
a treadmill test (Finni et al., 2007). This solution has also 
been noted to be reliable during activities of daily living 
such as stair descent, stair ascent, and repeated unloaded 
squats (Bengs et al., 2017). One study of the Athos® sys-
tem was reported to be consistent when compared against 
RG system Biopac over a range of dynamic activities, in-
dicating good validity and reliability (Lynn et al., 2018). 
Another study concluded that the Athos® system was not 
consistent in its measurements and did not match up with 
the NoraxonTM system during dynamic activities such as 
bilateral hamstring curls and box step-ups (Desmarais & 
Giess, 2017). The only existing study of the Strive™ sys-
tem was reported not to be a valid EMG acquisition sys-
tem for dynamic activities (Smith, 2019). However, in both 
studies that concluded this form of sEMG was not valid, a 
major limitation was identified in that consistent care was 
not taken to properly lubricate the sEMG system prior to 
data collection (Desmarais & Giess, 2017; Smith, 2019). 
Additional limitations were identified in the study of the 
StriveTM system. The first limitation was that no formal 
analysis was conducted on dynamic activities recorded be-
cause “Sense3 did not acquire enough successful trials to 
do proper EMG analysis” and “the inability to record an 
acceptable EMG signal during the movement correlates to 
a fail if Sense3 were to be used in a real world, dynamic 
scenario” (Smith, 2019). This conclusion warrants further 
investigation as the author notes an inconsistency in the 
preparation of the surface electrodes:

“Aside for the fitting of the shorts, Strive advised ap-
plying water to the electrodes before testing to optimize 
results. Applying water was not implemented until after 
the first couple of participants. This continued for a few 
participants, but then was aborted for the remaining par-
ticipants. Nevertheless, a noticeable difference between 
results were not seen between the middle participants 
with the beginning and ending participants” (Smith, 
2019).

This inconsistency indicates that the poor results were 
more likely due to poor contact that resulted from a lack 
of proper lubrication of sensors. Both studies that reported 
positive results of Athos® and MyontecTM speak specifi-
cally to the importance of the electrodes being wet when 
collecting measurements to ensure proper conduction 
(Finni et al., 2007; Lynn et al., 2018). Inconsistencies in 
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results of the Strive Sense3TM system indicate the need for 
further  investigation with proper implementation of an ex-
periment. Moreover, a thorough literature review revealed 
there are no existing studies comparing traditional and tex-
tile-based sEMG system concurrently for the squat exer-
cise over a progressive load. Therefore, the purpose of this 
study is to compare the Strive™ Sense3 wearable sEMG 
system against an RG sEMG system during the squat ac-
tivity at different loads. From a practical standpoint, five 
coaches at the collegiate- and professional-level of Men’s 
basketball speak to the findings from an autoethnographic 
frame based on previous experience using the StriveTM sys-
tem in the field.

MATERIALS AND METHODS

Participants

Seventeen participants including twelve males (n=12, 
age=23.3±5.8y, mass=82.7±10.3kg, height=179.1±4.3cm) 
and five females (n=5, age=21.2±1.5, mass=58.3±3.0kg, 
height=160.5±6.6cm) were recruited for this study. 
Participants were screened via a pre-participation question-
naire to determine any physical contraindications to partic-
ipation and exercise training history. The participants were 
recreationally trained and the inclusion criteria consisted of 
the following: (a) at least 18 years of age and (b) a resis-
tance training history of three bouts per week for at least six 
months with at least two months of back squat experience 
and having no physical limitations to exercise. Participants 
were excluded if they had metabolic, cardiovascular, and or 
musculoskeletal conditions that would affect their perfor-
mance. All participants signed an informed consent form pri-
or to participation. The study was approved by the California 
State Polytechnic University, Pomona (CPP) Institutional 
Review Board.

Experimental Design 

This was a within-subjects design study to validate the 
accuracy of the Strive™ Sense3 in capturing sEMG mea-
surements during the back squat exercise with progressive 
loading. Participants were required to attend one testing 
session at the CPP Human Performance Laboratory. After 
eligibility was confirmed via questionnaire, participants 
underwent basic anthropometry measurements (height, 
weight, leg length and circumference). The participants 
were then asked to wear the Strive™ garment of an ap-
propriate size. The embedded electrodes were to be in 
good contact with the skin on the rectus femoris of the 
quadriceps muscle. Then the leg opening of the Strive™ 
garment was folded to the bottom edge of the garment’s 
embedded electrodes. The exposed skin directly below the 
bottom edge of the Strive electrodes was prepared for the 
sEMG electrodes of the criterion measure research grade 
(RG) device (Noraxon™ DTS EMG system). Afterwards, 
participants completed 10 minutes of treadmill walking 
or jogging followed by dynamic stretching. Then, partici-
pants performed the back squat protocol which began with 

a light warm-up using a self-selected load, which was 30% 
of their estimated one repetition maximum (RM). After 
three minutes of rest, participants performed the back 
squat using a load equal to 30% (light weight), 60% (me-
dium weight), and 80% (heavy weight) of their estimated 
RM in the listed order. Each load was performed for 3 con-
tinuous repetitions and two minutes of rest was provided 
between each load. RG and Strive™ sEMG data were col-
lected concurrently during each load trial and transmitted 
wirelessly to their corresponding data acquisition system 
for further analysis. 

Procedures

Back squat protocol

The back squat protocol was executed using a standard 
squat rack, 20kg barbell, and Olympic weight plates 
(Rogue Fitness, Columbus, OH, USA). Selection for each 
load was based on a percentage of the participant’s esti-
mated 1RM (one-repetition maximum). Given the back 
squat experience, as confirmed during pre-screening, par-
ticipants were confident in their estimation, and no issues 
pertaining to the absolute load were observed during any 
of the trials. During the back squat warm-up, feet place-
ment was marked with tape to ensure replication across all 
three trials. Participants were instructed to perform each 
repetition with a constant tempo of 2s eccentric and 1s 
concentric phases. Tempo was aided using a metronome 
set at 60 beats per minute. Participants were instructed to 
refrain from performing extraneous contractions such as 
“squeezing” quadriceps at the end of the concentric phase, 
and participants completed the eccentric portion of the lift 
to 90 degrees of knee flexion. A physical blockade was 
positioned behind the participant to provide a landmark 
for the participant to stop the descent of the back squat. 
The height of the landmark was adjusted for each partic-
ipant during the warm-up, and a goniometer was used to 
determine the landmark height in which 90 degree of knee 
flexion was achieved. 

Surface electromyography

The sEMG measurements from the rectus femoris on both 
limbs were collected concurrently with Strive™ Sense3 
and the Noraxon™ DTS EMG system, i.e. the RG sys-
tem. The RG system captured sEMG amplitude data us-
ing bipolar adhesive sEMG electrodes (Noraxon™ Dual 
Electrodes, Ag-AGCL, spacing 2.0cm, Noraxon USA Inc., 
Scottsdale, AZ). The RG system used herein was utilized 
by multiple prior studies (Ebersole et al., 2006; Ekstrom 
et al., 2012) for assessing sEMG amplitude during exercise. 
Strive™ garments were fit to each participant such that the 
embedded electrodes of the wearable device were exactly 
positioned over the rectus femoris. The leg opening of the 
Strive garment was then folded such that the RG system 
electrode could be placed immediately below the Strive™ 
electrodes. For acquiring the sEMG measurements by the 
Strive™ system, there were no skin preparations at the site 
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of contact as this is not a required procedure during practi-
cal settings; however, the electrodes were dampened with 
water to facilitate conductivity as end-users would do in 
real-world situations (via sweat). For data collection via 
the RG system, the electrode site was prepared directly be-
neath the bottom edge of the Strive™ electrode according 
to previous methods SENIAM (Hermens et al., 2000). The 
site was first shaved and then cleansed, abraded, and dried 
prior to RG electrode placement. The RG system sampled 
at a frequency of 1500 Hz while the Strive™ Sense3 ac-
quired data at 21.33 Hz using a mobile device wirelessly 
interfaced to the garment and native software application 
developed by Strive™ for the Sense3 product. Although 
Strive™ Sense3 has the capability to acquire data at 
1000 Hz frequency, in this study, the data was captured at 
21.33 Hz for concordance with real-world cases in which 
end-users would monitor the data at this frequency for run 
time and efficiency purposes. 

Data Preparation
PythonTM was utilized to perform data preparation and 
data analysis. The first preparation step was to account for 
the different sampling rates from each EMG system. The 
Noraxon™ data were down sampled by the rate of 1500 / 
(21 + 1/3) meaning that, for every 70 samples acquired by 
the Noraxon™ system, only the measurement for the first 
sample was considered for the following analysis. The re-
maining 69 data points were discarded.

After matching the sampling rates, data from Strive™ 
and Noraxon™ were time-aligned such that any possible 
delays due to beginning data capture at different times be-
tween systems would be mitigated in the analysis. Data 
alignment was performed using time-lagged cross-correla-
tion (Rhudy, 2014). The Strive™ data for each trial was 
lagged (shifted) repeatedly from the range of -200 to 200 
samples for both the left and right limb. The correlation 
between the Noraxon™ and the shifted Strive™ data was 
calculated in each step to find the optimal amount of lag, 
n. Under the assumption that data collected for both limbs
are already synchronized within its respective system, the 
best of the two correlations was used to align both limbs for 
each weight. Then, the original Strive™ data for both the 
left and the right limb was shifted by n samples to synchro-
nize the Noraxon™ and Strive™ data (Figure 1) (Rhudy, 
2014; Saucier et al., 2019).

After the preprocessing steps were completed, each 
trial was visually inspected to ensure proper alignment. 
If any trials were observed to not be properly aligned, the 
researchers revised the preprocessing approach according-
ly. Consequently, the data collected for participants 3 and 
14 were removed prior to analysis. For participant three, it 
was observed that the Strive™ sensor mounted on the right 
limb showed no response for most samples (i.e. sEMG 
amplitude=0 µV). For these trials, it is likely that this was 
a result of insufficient lubrication and consequently poor 
electrode contact with the skin, which has been observed 
in other studies analyzing sEMG embedded into cloth-
ing (Desmarais & Giess, 2017; Lynn et al., 2018; Smith, 

2019). Due to this poor response, the data from StriveTM 
and NoraxonTM could not be properly aligned. After ob-
serving the measurements collected from participant 14, it 
was noted that the data from the right and left limb were 
switched. Therefore, to assure data accuracy, the measure-
ments from participant 14 were also discarded. The plots of 
preprocessed data for all participants are presented in the 
Appendix.

Statistical Analysis
Validity
To assess concurrent criterion validity of Strive™ Sense3 
in acquiring sEMG measurements, the Pearson’s prod-
uct-moment correlation coefficient value (r) was comput-
ed (Düking et al., 2018). Calculations for r can be seen 
in Equation 1, where xi is the ith NoraxonTM sample, yi is 
the ith StriveTM sample, and n is the sample size, or num-
ber of pairs of samples for a given trial (Mukaka, 2012). 
Pearson’s correlation coefficient is a unitless value report-
ed on the scale of -1 to 1, with a higher absolute value of 
the result indicating a stronger association between the 
two data sets. Correlation coefficient values were assessed 
in determining the association between the measurements 
of Strive™ and Noraxon™ electrodes for each trial with 
a specific weight (light, medium, or heavy) and specific 
limb (right or left) for each participant. Results were in-
terpreted based on guidance suggested by Mukaka: 0.0 
< r <= 0.3—no correlation; 0.3 < r <= 0.5—poor cor-
relation; 0.5 < r <= 0.7—moderate correlation; 0.7 < r 
<= 0.9—good correlation; 0.9 < r <= 1.0—excellent cor-
relation (Mukaka, 2012).

2 2 2 2

( ) ( )( )

 ( )  ( )

−
=

− −

∑ ∑ ∑
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i i i i

i i i i

n x y x y
r

n x x n y y
 (1)

Reliability

To assess the interrater reliability of StriveTM in compari-
son to NoraxonTM when measuring muscle activity, the in-
traclass correlation coefficient (ICC) and 95% confidence 
intervals (CI) were computed for each trial. The ICC is 
reported as a value between 0 and 1, with results closer to 
1 indicating a higher reliability (Koo & Li, 2016). When 
determining the quality of interrater reliability between the 
StriveTM and NoraxonTM measurement systems, ICC values 
are rated accordingly: 0.0 < r <= 0.5—poor reliability; 0.5 
< r <= 0.75—moderate reliability; 0.75 < r <= 0.9 good 
reliability; 0.9 < r <= 1.0—excellent reliability (Koo & Li, 
2016). Further, individual trials are rated based on their 
95% CI, rather than the ICC value itself since this value 
is an estimate. Therefore, trials can be rated as “Good to 
Excellent reliability” if the CI spans multiple categories 
(Koo & Li, 2016). For example, in Figure 4, the “Poor 
to Moderate ICC” category in the stacked bar chart indi-
cates a trial where the lower end of the 95% CI achieved 
a Poor rating (0-0.5 ICC), and the upper end of the 95% 
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CI achieved a Moderate rating (0.5-0.75 ICC). Thus, the 
corresponding category encompasses both ICC ranges for 
the trial. In the case of the “Good ICC” category, both ends 
of the 95% CI were within the Good rating range (0.75-
0.9 ICC), so only one range of ICC values are account-
ed for in this category. ICC values were calculated using 
Pingouin, a PythonTM-based statistical package (Vallat, 
2018). Further, both absolute and normalized sEMG data 
have been analyzed.

A single-rating, consistency, two-way mixed-effects 
model was selected (Koo & Li, 2016). The formula for com-
puting this form of the ICC model along with its respec-
tive Shrout and Fleiss Convention is denoted in Equation 2, 
where MS_R is mean square for rows (in this case, pairs 
of samples from both systems), MS_E mean square for er-
ror, and k is the number of measurements collected during 
a trial. For the Shrout and Fleiss Convention (ICC (3,1)), 
the number 3 indicates the model, while the number 1 indi-
cates the model type (Koo & Li, 2016). A single rater type 
was used as the NoraxonTM system is considered a research 
grade tool that functions as a baseline for the experiment, so 
the researchers are consequently not interested in the mean 
of the two rating systems. Consistency was chosen over ab-
solute agreement since there was an inherent bias observed 
between the two systems during the preprocessing phase 
(i.e. NoraxonTM output was generally higher than StriveTM 
output). Lastly, the two-way mixed-effects model was se-
lected since the two rating systems are the only systems of 
interest for this study (Koo & Li, 2016). Since there was an 

observed bias between the two systems for some trials, ICC 
analysis was performed for both normalized and absolute 
sEMG data. The data from both systems will be normalized 
based on the maximal voluntary contraction (MVC) of each 
trial.

(3,1)
( 1)

=
+ −

−R E

R E

MS MSICC
MS K MS (2)

RESULTS
Pearson correlation coefficient analysis produced results 
ranging from “Poor” correlation to “Excellent” correla-
tion. ICC analysis of the 95% CI produced results ranging 
“Poor to Moderate” reliability to “Excellent” reliability. 
Normalizing the sEMG for both datasets improved the re-
sults to range from “Moderate” to “Excellent”. The StriveTM 
Sense3 device proved to be both valid and reliable for most 
participants (93% of trials with “Good” correlation or high-
er; 87% of absolute sEMG trials with “Good” reliability or 
higher, 98% of normalized sEMG trials with “Good” re-
liability or higher). Figure 2 depicts the range of r values 
across each weight-limb combination, summarizing all par-
ticipants included in analysis. Figures 3 illustrates the mean 
and standard deviations of the estimated ICC values across 
all weight-limb combinations, while Figure 4 demonstrates 
a distribution of each trial’s 95% ICC CI for all weight-limb 
combinations. 

Figure 1. The preprocessing steps on a randomly selected trial corresponding to the measurements from participant 8, left leg with 
heavy weight. (a) Indicates original data from NoraxonTM, (b) Down-sampled data of NoraxonTM electrodes, (c) StriveTM and 
NoraxonTM data before cross-correlation, and (d) StriveTM and NoraxonTM data after cross-correlation

dc

ba
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Figure 2. Boxplots of range of Pearson correlation coefficient (r) among weight and limb across all trials. Outlier trials are denoted by 
participant

Figure 3. Mean ICC estimate, 95% CI lower and upper bounds for all trials measuring absolute and normalized sEMG. Note: 
Visualization is constricted to ICC >= 0.8 to depict relative differences between limb segments and weight amounts

Validity

Reliability 

Figure 4. Stacked bar chart representing proportions of trials falling within certain ICC ratings based on upper and lower bounds of 95% 
CI when measuring (a) absolute sEMG data and (b) normalized sEMG data. Categories including ratings such as “Poor to Moderate” 
indicate CI spanned across multiple ICC ratings

ba
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DISCUSSION 

Pearson Correlation Coefficient (r) Analysis—Validity 
Strive™ measurements revealed a great capability in ex-
plaining the variation among the Noraxon™ measurements 
evaluated by the r measurement. When observing individual 
trials, r values ranged from poor to excellent correlation. For 
the one trial that resulted in “Poor” correlation, it was appar-
ent that there was poor contact between the sensor and the 
muscle, which was likely a result of insufficient lubrication 
of the sensor (Lynn et al., 2018; Smith, 2019). Pearson cor-
relation coefficient values for participants averaged across 
all six weight-limb combinations showed an average r > 0.7, 
indicating good correlation among all participants. The over-
all mean r was equal to 0.883 when accounting for all trials 
across all participants, indicating good correlation overall 
between the StriveTM and RG sEMG data. There is little to 
compare to other literature as similar studies did not collect 
measurements from two systems concurrently (Desmarais 
& Giess, 2017; Smith, 2019) and only compared peak, 95th 
percentile, and sum values rather than values collected over 
an entire movement (Lynn et al., 2018; Smith, 2019). Mean 
r values were lower for both limbs when participants squat-
ted with the light weight in comparison to the medium and 
heavy weights. This could indicate that the StriveTM sensors 
more accurately measure muscle activity when the partic-
ipant’s squat load is greater. Though this study is the first 
of its kind in comparing two forms of sEMG concurrently 
over a progressive load during the squat exercise, previous 
research indicates that overall sEMG output increases with 
higher loads, consequentially supporting the notion that 
there is a greater amount of muscle activity to detect at high-
er loads (Alkner et al., 2000).

Intraclass Correlation Coefficient (ICC) Analysis—
Reliability 
When observing trials among weight and limb for the ab-
solute sEMG data, at least 80% of trials were categorized 
as “Good” or higher for all weight-limb combinations (see 
Figure 4a). Trials categorized as “Excellent” occurred more 
often for the medium and heavy weight trials, further sug-
gesting the notion that sEMG muscle detection is more reli-
able in the presence of more muscle activity. Trials with ICC 
CIs categorized as “Moderate” or worse occurred for partic-
ipants 1, 10, and 12. Normalizing the sEMG data from both 
systems improved the results overall, with the worst-case 
trial reliability still being categorized as “Moderate” (see 
Figure 4b). Mean ICC values increased by roughly 0.02-0.07 
for all weight-limb combinations after normalizing the data, 
which indicates that the StriveTM system is more consistent 
in measuring muscle activity in comparison to the RG sys-
tem when analysing a percentage change of output rather 
than a change in the raw data. Previous literature has found 
success with this and elected to perform analysis with nor-
malized sEMG data instead (Lynn et al., 2018). Besides the 
light weight, right limb combination, all other weight-limb 
combinations achieved ICCs of “Good” or better for 90% of 
trials after normalization. This discrepancy in performance 

could have been a result of displacement of the sensor in the 
right leg in which it was unable to accurately detect muscle 
activity until a certain muscle intensity was reached (Massó 
et al., 2010). Four percent of trials resulted in poor correla-
tion, which is likely either due to poor contact with the sen-
sor or improper fit of the shorts to the participant. This can 
be expected as other studies have noted poor participant data 
due to poor contact with the skin (Desmarais & Giess, 2017; 
Lynn et al., 2018; Saucier et al., 2019). For the purposes of 
this study, the researchers elected to keep these results in the 
overall calculations as these issues will still be prevalent in a 
real-world setting and need to be factored in when perform-
ing analysis of sEMG data.

Application for Coaching Practitioners 
Often in the validation of newer technology, the perspective 
of the practitioner is most critical as they are the frequent users 
of the solution. The last five authors of this study are coaches 
at the collegiate- and professional-level of Men’s Basketball 
and will use an autoethnographic frame to speak as practi-
tioners to the research findings, Strive™ Sense3 technolo-
gy, and human performance data collected from wearables 
(Brown et al., 2020; Luczak, Burch V, Smith, Lamberth, & 
Carruth, 2020; Luczak, Burch V, Smith, Lamberth, Carruth, 
et al., 2020; Luczak, Burch, et al., 2020; Shelly et al., 2020). 
The goal for any strength and conditioning coach (S&CC) 
working with elite-level athletes is to design a program reg-
imen that best compliments and builds upon their existing 
skills and strengths while minimizing weaknesses and mit-
igating injuries. Coaches at this level should be experts in 
both their craft and the science behind human performance. 
Wearable solutions such as Strive combined with expertise 
from data scientists will likely never replace the S&CC as 
good coaches understand the context of the training and the 
uniqueness of how each of their athletes are built and per-
form. Wearables and the data they produce are instead addi-
tional tools used to aid the practitioner in making decisions 
about health and safety. Wearables are only as useful as the 
added value their data provides and if said data is consistent. 
The practitioner authors agree that “consistently inaccurate 
data is at least actionable while inconsistently accurate data 
is garbage.” The point being that with consistent data, it does 
not have to be perfect to show changes in performance out-
put. Vast changes in data depicting day-to-day performance 
may not explain what issues exist or what caused the change, 
but they provide a red flag indicator that the S&CCs should 
investigate as the change in output may indicate a problem. 
Given this overly simplified explanation of the relationship 
between practitioners and their wearables tools, the im-
portance of validating the true capability for accurate data 
collection from a human performance-based technology is 
made clear. Therefore, validating a new tool against a proven 
and previously validated technology is a critical step in trust, 
something often missing from technologies in the wearable 
space (Luczak et al., 2018, 2020).

While further validation is always recommended and will 
be conducted by this research team, the results of this study 
presently demonstrate that the Strive™ Sense3 can be a valid 
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and reliable device for measuring sEMG responses without 
the challenges of expecting student- or professional-ath-
letes to conduct training movements within the confines of 
a laboratory and at the expense of keeping sEMG electrodes 
attached. The intent of the Strive™ Sense3 is to capture 
both external loads (how much movement and intensity of 
movement) as well as internal loads (muscle activation) over 
the course of a workout or competition. The author prac-
titioners understand that while external load across many 
of the athletes performing the same workout regimen may 
have similar totals, the internal load total may vary indicat-
ing that some athletes are more efficient in their movements 
and muscle activations than others (Petway et al., 2020). 
Therefore, given these results, Strive™ Sense3 can aid 
S&CCs and other training practitioners in terms of (letters 
are unnecessary) load management, neuromuscular fatigue 
monitoring, baseline movement signature through various 
stationary and dynamic movements, capturing information 
on specific muscle contraction patterns, return to play pro-
tocols for injured athletes, and successful organization and 
execution of a periodized approach to load management 
with elite athletes. Author practitioners on this paper have 
successfully used Strive™ Sense3 during return-to-play pro-
tocols. Strive™ has been used to identify and immediately 
address any asymmetries being developed during athlete re-
habilitation. The data generated by Strive™ ensures S&CCs 
that they are progressing in their training program appropri-
ately while providing a visual “peace of mind” to the athletes 
who see their improvements visualized in the performance 
reporting. Not every athlete responds to stress in the same 
way, but using Strive™ to collect internal and external loads 
while also understanding the context of the data by knowing 
each athlete individually enables S&CCs to ensure training 
is optimal for all members of the team. Further, Strive™ and 
similarly validated wearable technology empowers S&CCs 
to objectively measure key performance indicators, or KPI’s, 
and overlap them with more subjective data from wellness 
questionnaires such as RPE (rate-perceived exertion), sleep 
quality, daily readiness, and overall physical preparedness.

While practitioners express the benefits of using the 
Strive™ Sense3 and similarly validated wearables common 
to the collegiate and professional ranks (Luczak et al., 2020), 
there are areas for opportunity as with any new technolo-
gy. While S&CCs generally have educational and training 
backgrounds in kinesiology areas such as biomechanics 
and physiology, the head coaches and positional coaches 
may not. The visual data presentation could be easier for all 
stakeholders to understand as head coaches want the most 
pertinent and exception-based information to be quickly 
digestible. Other challenges when working with Strive™ 
are common to many wearables and this includes invento-
ry management and charging. Industrial companies had to 
combat the problem of large amounts of technology years 
ago and thus created equipment issue rooms and staff to 
manage technology (Burch et al., 2019).

Additional challenges specific to Strive™ that practi-
tioners pursuing the use of this technology should be made 
aware is the need to keep the sensor pads lubricated as this is 

often required to record data. The practitioner authors stress 
the importance of wetting the pads prior to use, otherwise 
data capture will be inconsistent at best. Once athletes begin 
to sweat, the pads remain moist and data collection is con-
sistent but prior to sweat activation, little to no data may be 
recorded. This issue exists in laboratory EMG systems and 
was experienced over the course of this study specifically in 
outlier participants. This problem has also been experienced 
by authors of this article such that wetting the pads before 
use is now part of their equipment management strategy pri-
or to every practice or competition.

Lastly and from a recruiting and scouting perspective, 
professional scouts typically do not utilize data from wear-
ables such as Strive™ to make assessments about which 
players to observe or consider for the draft. They do, howev-
er, often rely on the expertise of the S&CCs at the collegiate 
level to understand if the physical capabilities of the athlete 
align with the expectation of playing at the most elite levels 
of the game. All aspects of the player are important in the 
evaluation process for promoting a collegiate level athlete to 
the professional leagues. Professional scouts ask questions 
of S&CCs and athletic trainers that would be more gener-
al in nature. But the answers provided by S&CCs can be 
more informed if they are using technologies like Strive™ 
to baseline athletes and manage their workloads. Further, in 
the draft evaluation process, the members of a professional 
organization who would most benefit from the specific data 
provided by Strive™ are the S&CCs and athletic trainer that 
could inherit the athletes, their capabilities, and their past in-
juries if they are drafted. The use of wearables and additional 
data allow scouts and their colleagues to understand the pro-
jected physical trainability and how much better athletically 
the prospect can become.

Limitations
Investigating the data more precisely indicated that there 
are some outliers corresponding to data from participants 2, 
10, 12, 13, and 15 (see Figure 2). When investigating the 
outlier data, the researchers point towards two potential 
reasons for poor results in the data: (a) the StriveTM sensor 
was not sufficiently lubricated prior to data collection, and 
therefore made poor contact with the rectus femoris during 
the trial, and (b) the StriveTM shorts themselves were not an 
ideal fit for the participant, and was consequently not placed 
optimally thereby failing to pick up more subtle changes 
in muscle activity. The data observed in the right limb for 
participant 12 supports the first case. In Figure 5, there was 
poor contact between the StriveTM electrodes and the rectus 
femoris on the right limb, thus resulting in data points where 
the amplitude would sporadically drop, sometimes to 0 µV. 
Existing studies seeking to validate sEMG-based athletic 
shorts have reported similar instances of poor contact with 
the skin due to lack of lubrication (Desmarais & Giess, 2017; 
Lynn et al., 2018; Smith, 2019). This same behaviour can be 
seen for participant 3 in the Appendix section, except much 
worse. Since there was a significant lack of meaningful data 
for participant 3 in the medium and heavy weight trials, the 
researchers excluded this data from the analysis as it was 
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not clear whether the data was being properly aligned in the 
cross-correlation preprocessing phase (Lynn et al., 2018; 
Smith, 2019).

In the second case, trial data from participant 2 indicated 
that the shorts may not have fit the participant well, and thus 
the output in the StriveTM sensors did not pick up as much 
of the subtle changes in muscle activity as the NoraxonTM 
sensors. Figures 7a and 7b show an example where relative 
peak values did not much up well between both systems. 
Figure 7 shows examples where the shorts simply did not 
seem to fit the participant well and did not trend accurately 
with the NoraxonTM data. This ultimately led to the outlier 
results that were discovered during the analysis phase of the 
study. For Figure 8b, it appears that the subtle changes 
in peak data were not tracked as accurately with the 
StriveTM system, like the data shown in Figure 6 for 
participants 1 and 2. In Figure 7a, the StriveTM sensor 
detected initial mus-cle activation as participant 10 began 
the squat but did not continue to detect the muscle activity 
as the participant com-pleted the execution of the squat. 
Suggestions from other studies indicate that proper fit of 
sEMG-embedded athletic wear is an important factor to 
consider for accurately collect-ing data (Aquino & Roper, 
2018; Smith, 2019). For the poor results in Figure 7c, it 
appears that a combination of poor fit of the StriveTM shorts 
and insufficient lubrication of the elec-trodes occurred 
during this trial. Figure 7d presents a single edge case that 
was discovered where the NoraxonTM system seemed to 
spike randomly during the trial, which could have been a 
result of poor contact or random noise during the 

squat. This was the only trial of the sort for participant 6, 
which could be a potential reason for the light weight, right 
limb summary results being noticeably worse than the other 
weight-limb combinations. 

A key takeaway from examining these outliers is that 
care must be taken to properly lubricate the StriveTM elec-
trodes prior to use. This is typically caused by the wearer’s 
sweat but for testing and validation activities, or any ac-
tivities prior to sweat forming, contact between the sensor 
and the wearer may be poor thereby resulting in inconsis-
tent data (Lynn et al., 2018; Smith, 2019). This issue may 
be mitigated when the athlete remains active and gener-
ates enough sweat to assist with lubrication of the sensor. 
Further, when collecting data with the StriveTM shorts, it is 
imperative that the shorts be properly fitted to the athlete 
and that the sensors are precisely positioned on the muscles 
(Aquino & Roper, 2018; Smith, 2019). A final consideration 
to note is the overall improvement in validity and reliability 
in trials where participants lifted medium and heavy weight. 
This trend could indicate that the StriveTM shorts function 
better during more intense muscle activity. Though existing 
literature has not validated sEMG athletic shorts against a 
progressive load, previous research on the squat exercise 
indicates that muscle activation increases with barbell 
weight (Clark et al., 2012; McCaw & Melrose, 1999; van 
den Tillaar et al., 2019). Consequently, the technology may 
perform more optimally for activities that require greater 
muscle activity such as powerlifting and football, whereas 
cardio-intensive activities such as running and basketball 

Figure 5. Data corresponding to participant 12 (P12) exhibiting drops in StriveTM sEMG amplitude in the right limb: (a) data from 
right limb on light weight trial, (b) data from right limb on medium weight trial, and (c) data from right limb on heavy weight trial.

cba

Figure 6. Outlier data for participants 1 and 2 (P1, P2) where subtle changes in NoraxonTM were not tracked accurately by StriveTM.  
(a) Data from the left limb during the light weight trial (P2), (b) Data from the right limb during the light weight trial (P2), and (c) Data 
from the left limb during the light weight trial (P1). In this case, the StriveTM sensor on the left limb may not have been placed well or 
differences in participant anthropometries or leg symmetries caused the participant leg not to properly align with the sensor.

cba
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could produce less accurate sEMG data. More testing with 
more participants performing various athletic movements 
will be needed to test this assumption, however.

CONCLUSIONS

Results indicate that the StriveTM system can be utilized 
as a valid and reliable system under ideal circumstances. 
Analysis of outlier data indicated that proper lubrication of 
the sensor electrodes is imperative to acquire accurate data 
from the sEMG shorts and that the shorts must be a proper fit 
for the athlete in order to best detect muscle activity. Lastly, 
improved results for the medium and heavy weight over the 
light weight trials indicate that there may be a threshold in 
muscle activation that should be reached in order for the 
StriveTM shorts to accurately track the data. If care is not tak-
en to use and fit the shorts properly, the athlete and coaching 
practitioner could be at risk of collecting data that will go 
to waste due to an insufficient detection of muscle activity.
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APPENDIX
In this part, the plots of sEMG measurements from the StriveTM Sense3 and NORAXONTM systems are illustrated for each 
trial with light, medium, and heavy weights and separated by the measurements from the left and right limbs.
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